%global _empty_manifest_terminate_build 0 Name: python-dagster Version: 1.2.6 Release: 1 Summary: The data orchestration platform built for productivity. License: Apache-2.0 URL: https://dagster.io Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e7/36/50f856c3892ea03ead3a6913ef60e1c107bf84eb585d7a5282e28d2b3d96/dagster-1.2.6.tar.gz BuildArch: noarch Requires: python3-click Requires: python3-coloredlogs Requires: python3-Jinja2 Requires: python3-PyYAML Requires: python3-alembic Requires: python3-croniter Requires: python3-grpcio-health-checking Requires: python3-packaging Requires: python3-pendulum Requires: python3-protobuf Requires: python3-dateutil Requires: python3-dotenv Requires: python3-pytz Requires: python3-requests Requires: python3-setuptools Requires: python3-tabulate Requires: python3-tomli Requires: python3-tqdm Requires: python3-typing-extensions Requires: python3-sqlalchemy Requires: python3-toposort Requires: python3-watchdog Requires: python3-docstring-parser Requires: python3-universal-pathlib Requires: python3-pydantic Requires: python3-psutil Requires: python3-pywin32 Requires: python3-grpcio Requires: python3-contextvars Requires: python3-grpcio Requires: python3-black[jupyter] Requires: python3-docker Requires: python3-mypy Requires: python3-pyright Requires: python3-pandas-stubs Requires: python3-types-backports Requires: python3-types-certifi Requires: python3-types-chardet Requires: python3-types-croniter Requires: python3-types-cryptography Requires: python3-types-mock Requires: python3-types-paramiko Requires: python3-types-pkg-resources Requires: python3-types-pyOpenSSL Requires: python3-types-python-dateutil Requires: python3-types-PyYAML Requires: python3-types-pytz Requires: python3-types-requests Requires: python3-types-simplejson Requires: python3-types-six Requires: python3-types-sqlalchemy Requires: python3-types-tabulate Requires: python3-types-tzlocal Requires: python3-types-toml Requires: python3-ruff Requires: python3-docker Requires: python3-grpcio-tools Requires: python3-mock Requires: python3-objgraph Requires: python3-pytest-cov Requires: python3-pytest-dependency Requires: python3-pytest-mock Requires: python3-pytest-rerunfailures Requires: python3-pytest-runner Requires: python3-pytest-xdist Requires: python3-pytest Requires: python3-responses Requires: python3-snapshottest Requires: python3-tox Requires: python3-yamllint Requires: python3-buildkite-test-collector %description
dagster logo

Remember to star the Dagster GitHub repo for future reference.

__Dagster is a cloud-native data pipeline orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability.__ It is designed for **developing and maintaining data assets**, such as tables, data sets, machine learning models, and reports. With Dagster, you declare—as Python functions—the data assets that you want to build. Dagster then helps you run your functions at the right time and keep your assets up-to-date. Here is an example of a graph of three assets defined in Python: ```python from dagster import asset from pandas import DataFrame, read_html, get_dummies from sklearn.linear_model import LinearRegression @asset def country_populations() -> DataFrame: df = read_html("https://tinyurl.com/mry64ebh")[0] df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"] df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float") return df @asset def continent_change_model(country_populations: DataFrame) -> LinearRegression: data = country_populations.dropna(subset=["change"]) return LinearRegression().fit(get_dummies(data[["continent"]]), data["change"]) @asset def continent_stats(country_populations: DataFrame, continent_change_model: LinearRegression) -> DataFrame: result = country_populations.groupby("continent").sum() result["pop_change_factor"] = continent_change_model.coef_ return result ``` The graph loaded into Dagster's web UI:

An example asset graph as rendered in the Dagster UI

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production. ## Quick Start: If you're new to Dagster, we recommend reading about its [core concepts](https://docs.dagster.io/concepts) or learning with the hands-on [tutorial](https://docs.dagster.io/tutorial). Dagster is available on PyPI and officially supports Python 3.7+. ```bash pip install dagster dagit ``` This installs two modules: - **Dagster**: The core programming model. - **Dagit**: The web interface for developing and operating Dagster jobs and assets. Running on Using a Mac with an M1 or M2 chip? Check the [install details here](https://docs.dagster.io/getting-started/install#installing-dagster-into-an-existing-python-environment). ## Documentation You can find the full Dagster documentation [here](https://docs.dagster.io), including the ['getting started' guide](https://docs.dagster.io/getting-started).
## Key Features:

image

### Dagster as a productivity platform Identify the key assets you need to create using a declarative approach, or you can focus on running basic tasks. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. ### Dagster as a robust orchestration engine Put your pipelines into production with a robust multi-tenant, multi-tool engine that scales technically and organizationally. ### Dagster as a unified control plane Maintain control over your data as the complexity scales. Centralize your metadata in one tool with built-in observability, diagnostics, cataloging, and lineage. Spot any issues and identify performance improvement opportunities.
## Master the Modern Data Stack with integrations Dagster provides a growing library of integrations for today’s most popular data tools. Integrate with the tools you already use, and deploy to your infrastructure.

image

## Community Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help, and contribute to the open-source project. To see featured material and upcoming events, check out our [Dagster Community](https://dagster.io/community) page. Join our community here: - 🌟 [Star us on Github](https://github.com/dagster-io/dagster) - 📥 [Subscribe to our Newsletter](https://dagster.io/newsletter-signup) - 🐦 [Follow us on Twitter](https://twitter.com/dagster) - 🕴️ [Follow us on LinkedIn](https://linkedin.com/showcase/dagster) - 📺 [Subscribe to our YouTube channel](https://www.youtube.com/channel/UCfLnv9X8jyHTe6gJ4hVBo9Q) - 📚 [Read our blog posts](https://dagster.io/blog) - 👋 [Join us on Slack](https://dagster.io/slack) - 🗃 [Browse Slack archives](https://discuss.dagster.io) - ✏️ [Start a Github Discussion](https://github.com/dagster-io/dagster/discussions) ## Contributing For details on contributing or running the project for development, check out our [contributing guide](https://docs.dagster.io/community/contributing/). ## License Dagster is [Apache 2.0 licensed](https://github.com/dagster-io/dagster/blob/master/LICENSE). %package -n python3-dagster Summary: The data orchestration platform built for productivity. Provides: python-dagster BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-dagster
dagster logo

Remember to star the Dagster GitHub repo for future reference.

__Dagster is a cloud-native data pipeline orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability.__ It is designed for **developing and maintaining data assets**, such as tables, data sets, machine learning models, and reports. With Dagster, you declare—as Python functions—the data assets that you want to build. Dagster then helps you run your functions at the right time and keep your assets up-to-date. Here is an example of a graph of three assets defined in Python: ```python from dagster import asset from pandas import DataFrame, read_html, get_dummies from sklearn.linear_model import LinearRegression @asset def country_populations() -> DataFrame: df = read_html("https://tinyurl.com/mry64ebh")[0] df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"] df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float") return df @asset def continent_change_model(country_populations: DataFrame) -> LinearRegression: data = country_populations.dropna(subset=["change"]) return LinearRegression().fit(get_dummies(data[["continent"]]), data["change"]) @asset def continent_stats(country_populations: DataFrame, continent_change_model: LinearRegression) -> DataFrame: result = country_populations.groupby("continent").sum() result["pop_change_factor"] = continent_change_model.coef_ return result ``` The graph loaded into Dagster's web UI:

An example asset graph as rendered in the Dagster UI

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production. ## Quick Start: If you're new to Dagster, we recommend reading about its [core concepts](https://docs.dagster.io/concepts) or learning with the hands-on [tutorial](https://docs.dagster.io/tutorial). Dagster is available on PyPI and officially supports Python 3.7+. ```bash pip install dagster dagit ``` This installs two modules: - **Dagster**: The core programming model. - **Dagit**: The web interface for developing and operating Dagster jobs and assets. Running on Using a Mac with an M1 or M2 chip? Check the [install details here](https://docs.dagster.io/getting-started/install#installing-dagster-into-an-existing-python-environment). ## Documentation You can find the full Dagster documentation [here](https://docs.dagster.io), including the ['getting started' guide](https://docs.dagster.io/getting-started).
## Key Features:

image

### Dagster as a productivity platform Identify the key assets you need to create using a declarative approach, or you can focus on running basic tasks. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. ### Dagster as a robust orchestration engine Put your pipelines into production with a robust multi-tenant, multi-tool engine that scales technically and organizationally. ### Dagster as a unified control plane Maintain control over your data as the complexity scales. Centralize your metadata in one tool with built-in observability, diagnostics, cataloging, and lineage. Spot any issues and identify performance improvement opportunities.
## Master the Modern Data Stack with integrations Dagster provides a growing library of integrations for today’s most popular data tools. Integrate with the tools you already use, and deploy to your infrastructure.

image

## Community Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help, and contribute to the open-source project. To see featured material and upcoming events, check out our [Dagster Community](https://dagster.io/community) page. Join our community here: - 🌟 [Star us on Github](https://github.com/dagster-io/dagster) - 📥 [Subscribe to our Newsletter](https://dagster.io/newsletter-signup) - 🐦 [Follow us on Twitter](https://twitter.com/dagster) - 🕴️ [Follow us on LinkedIn](https://linkedin.com/showcase/dagster) - 📺 [Subscribe to our YouTube channel](https://www.youtube.com/channel/UCfLnv9X8jyHTe6gJ4hVBo9Q) - 📚 [Read our blog posts](https://dagster.io/blog) - 👋 [Join us on Slack](https://dagster.io/slack) - 🗃 [Browse Slack archives](https://discuss.dagster.io) - ✏️ [Start a Github Discussion](https://github.com/dagster-io/dagster/discussions) ## Contributing For details on contributing or running the project for development, check out our [contributing guide](https://docs.dagster.io/community/contributing/). ## License Dagster is [Apache 2.0 licensed](https://github.com/dagster-io/dagster/blob/master/LICENSE). %package help Summary: Development documents and examples for dagster Provides: python3-dagster-doc %description help
dagster logo

Remember to star the Dagster GitHub repo for future reference.

__Dagster is a cloud-native data pipeline orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability.__ It is designed for **developing and maintaining data assets**, such as tables, data sets, machine learning models, and reports. With Dagster, you declare—as Python functions—the data assets that you want to build. Dagster then helps you run your functions at the right time and keep your assets up-to-date. Here is an example of a graph of three assets defined in Python: ```python from dagster import asset from pandas import DataFrame, read_html, get_dummies from sklearn.linear_model import LinearRegression @asset def country_populations() -> DataFrame: df = read_html("https://tinyurl.com/mry64ebh")[0] df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"] df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float") return df @asset def continent_change_model(country_populations: DataFrame) -> LinearRegression: data = country_populations.dropna(subset=["change"]) return LinearRegression().fit(get_dummies(data[["continent"]]), data["change"]) @asset def continent_stats(country_populations: DataFrame, continent_change_model: LinearRegression) -> DataFrame: result = country_populations.groupby("continent").sum() result["pop_change_factor"] = continent_change_model.coef_ return result ``` The graph loaded into Dagster's web UI:

An example asset graph as rendered in the Dagster UI

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production. ## Quick Start: If you're new to Dagster, we recommend reading about its [core concepts](https://docs.dagster.io/concepts) or learning with the hands-on [tutorial](https://docs.dagster.io/tutorial). Dagster is available on PyPI and officially supports Python 3.7+. ```bash pip install dagster dagit ``` This installs two modules: - **Dagster**: The core programming model. - **Dagit**: The web interface for developing and operating Dagster jobs and assets. Running on Using a Mac with an M1 or M2 chip? Check the [install details here](https://docs.dagster.io/getting-started/install#installing-dagster-into-an-existing-python-environment). ## Documentation You can find the full Dagster documentation [here](https://docs.dagster.io), including the ['getting started' guide](https://docs.dagster.io/getting-started).
## Key Features:

image

### Dagster as a productivity platform Identify the key assets you need to create using a declarative approach, or you can focus on running basic tasks. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. ### Dagster as a robust orchestration engine Put your pipelines into production with a robust multi-tenant, multi-tool engine that scales technically and organizationally. ### Dagster as a unified control plane Maintain control over your data as the complexity scales. Centralize your metadata in one tool with built-in observability, diagnostics, cataloging, and lineage. Spot any issues and identify performance improvement opportunities.
## Master the Modern Data Stack with integrations Dagster provides a growing library of integrations for today’s most popular data tools. Integrate with the tools you already use, and deploy to your infrastructure.

image

## Community Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help, and contribute to the open-source project. To see featured material and upcoming events, check out our [Dagster Community](https://dagster.io/community) page. Join our community here: - 🌟 [Star us on Github](https://github.com/dagster-io/dagster) - 📥 [Subscribe to our Newsletter](https://dagster.io/newsletter-signup) - 🐦 [Follow us on Twitter](https://twitter.com/dagster) - 🕴️ [Follow us on LinkedIn](https://linkedin.com/showcase/dagster) - 📺 [Subscribe to our YouTube channel](https://www.youtube.com/channel/UCfLnv9X8jyHTe6gJ4hVBo9Q) - 📚 [Read our blog posts](https://dagster.io/blog) - 👋 [Join us on Slack](https://dagster.io/slack) - 🗃 [Browse Slack archives](https://discuss.dagster.io) - ✏️ [Start a Github Discussion](https://github.com/dagster-io/dagster/discussions) ## Contributing For details on contributing or running the project for development, check out our [contributing guide](https://docs.dagster.io/community/contributing/). ## License Dagster is [Apache 2.0 licensed](https://github.com/dagster-io/dagster/blob/master/LICENSE). %prep %autosetup -n dagster-1.2.6 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-dagster -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 1.2.6-1 - Package Spec generated