%global _empty_manifest_terminate_build 0 Name: python-scikit-multilearn Version: 0.2.0 Release: 1 Summary: Scikit-multilearn is a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem. License: BSD URL: http://scikit.ml/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fc/57/4c8951d3613c1cd569910bc3ddd5b3a755ad383297a12004eb2d61eefc06/scikit-multilearn-0.2.0.linux-x86_64.tar.gz BuildArch: noarch %description # scikit-multilearn [![PyPI version](https://badge.fury.io/py/scikit-multilearn.svg)](https://badge.fury.io/py/scikit-multilearn) [![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause) [![Build Status Linux and OSX](https://travis-ci.org/scikit-multilearn/scikit-multilearn.svg?branch=master)](https://travis-ci.org/scikit-multilearn/scikit-multilearn) [![Build Status Windows](https://ci.appveyor.com/api/projects/status/vd4k18u1lp5btaql/branch/master?svg=true)](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master) __scikit-multilearn__ is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Python packages ([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and follows a similar API to that of [scikit-learn](http://scikit-learn.org/). - __Website:__ [scikit.ml](http://scikit.ml) - __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html) ## Features - __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers). - __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field. - __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API. ## Dependencies In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package. ### Base dependencies ``` scipy numpy future scikit-learn liac-arff # for loading ARFF files requests # for dataset module networkx # for networkX base community detection clusterers python-louvain # for networkX base community detection clusterers keras ``` ### GPL-incurring dependencies for two clusterers ``` python-igraph # for igraph library based clusterers python-graphtool # for graphtool base clusterers ``` Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions) ## Installation To install scikit-multilearn, simply type the following command: ```bash $ pip install scikit-multilearn ``` This will install the latest release from the Python package index. If you wish to install the bleeding-edge version, then clone this repository and run `setup.py`: ```bash $ git clone https://github.com/scikit-multilearn/scikit-multilearn.git $ cd scikit-multilearn $ python setup.py ``` ## Basic Usage Before proceeding to classification, this library assumes that you have a dataset with the following matrices: - `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)` - `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)` Suppose we wanted to use a problem-transformation method called Binary Relevance, which treats each label as a separate single-label classification problem, to a Support-vector machine (SVM) classifier, we simply perform the following tasks: ```python # Import BinaryRelevance from skmultilearn from skmultilearn.problem_transform import BinaryRelevance # Import SVC classifier from sklearn from sklearn.svm import SVC # Setup the classifier classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True]) # Train classifier.fit(X_train, y_train) # Predict y_pred = classifier.predict(X_test) ``` More examples and use-cases can be seen in the [documentation](http://scikit.ml/api/classify.html). For using the MEKA wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper). ## Contributing This project is open for contributions. Here are some of the ways for you to contribute: - Bug reports/fix - Features requests - Use-case demonstrations - Documentation updates In case you want to implement your own multi-label classifier, please read our [Developer's Guide](http://scikit.ml/api/base.html) to help you integrate your implementation in our API. To make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a Pull Request! We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/). ## Cite If you used scikit-multilearn in your research or project, please cite [our work](https://arxiv.org/abs/1702.01460): ```bibtex @ARTICLE{2017arXiv170201460S, author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.}, title = "{A scikit-based Python environment for performing multi-label classification}", journal = {ArXiv e-prints}, archivePrefix = "arXiv", eprint = {1702.01460}, year = 2017, month = feb } ``` %package -n python3-scikit-multilearn Summary: Scikit-multilearn is a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem. Provides: python-scikit-multilearn BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-scikit-multilearn # scikit-multilearn [![PyPI version](https://badge.fury.io/py/scikit-multilearn.svg)](https://badge.fury.io/py/scikit-multilearn) [![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause) [![Build Status Linux and OSX](https://travis-ci.org/scikit-multilearn/scikit-multilearn.svg?branch=master)](https://travis-ci.org/scikit-multilearn/scikit-multilearn) [![Build Status Windows](https://ci.appveyor.com/api/projects/status/vd4k18u1lp5btaql/branch/master?svg=true)](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master) __scikit-multilearn__ is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Python packages ([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and follows a similar API to that of [scikit-learn](http://scikit-learn.org/). - __Website:__ [scikit.ml](http://scikit.ml) - __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html) ## Features - __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers). - __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field. - __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API. ## Dependencies In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package. ### Base dependencies ``` scipy numpy future scikit-learn liac-arff # for loading ARFF files requests # for dataset module networkx # for networkX base community detection clusterers python-louvain # for networkX base community detection clusterers keras ``` ### GPL-incurring dependencies for two clusterers ``` python-igraph # for igraph library based clusterers python-graphtool # for graphtool base clusterers ``` Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions) ## Installation To install scikit-multilearn, simply type the following command: ```bash $ pip install scikit-multilearn ``` This will install the latest release from the Python package index. If you wish to install the bleeding-edge version, then clone this repository and run `setup.py`: ```bash $ git clone https://github.com/scikit-multilearn/scikit-multilearn.git $ cd scikit-multilearn $ python setup.py ``` ## Basic Usage Before proceeding to classification, this library assumes that you have a dataset with the following matrices: - `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)` - `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)` Suppose we wanted to use a problem-transformation method called Binary Relevance, which treats each label as a separate single-label classification problem, to a Support-vector machine (SVM) classifier, we simply perform the following tasks: ```python # Import BinaryRelevance from skmultilearn from skmultilearn.problem_transform import BinaryRelevance # Import SVC classifier from sklearn from sklearn.svm import SVC # Setup the classifier classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True]) # Train classifier.fit(X_train, y_train) # Predict y_pred = classifier.predict(X_test) ``` More examples and use-cases can be seen in the [documentation](http://scikit.ml/api/classify.html). For using the MEKA wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper). ## Contributing This project is open for contributions. Here are some of the ways for you to contribute: - Bug reports/fix - Features requests - Use-case demonstrations - Documentation updates In case you want to implement your own multi-label classifier, please read our [Developer's Guide](http://scikit.ml/api/base.html) to help you integrate your implementation in our API. To make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a Pull Request! We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/). ## Cite If you used scikit-multilearn in your research or project, please cite [our work](https://arxiv.org/abs/1702.01460): ```bibtex @ARTICLE{2017arXiv170201460S, author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.}, title = "{A scikit-based Python environment for performing multi-label classification}", journal = {ArXiv e-prints}, archivePrefix = "arXiv", eprint = {1702.01460}, year = 2017, month = feb } ``` %package help Summary: Development documents and examples for scikit-multilearn Provides: python3-scikit-multilearn-doc %description help # scikit-multilearn [![PyPI version](https://badge.fury.io/py/scikit-multilearn.svg)](https://badge.fury.io/py/scikit-multilearn) [![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause) [![Build Status Linux and OSX](https://travis-ci.org/scikit-multilearn/scikit-multilearn.svg?branch=master)](https://travis-ci.org/scikit-multilearn/scikit-multilearn) [![Build Status Windows](https://ci.appveyor.com/api/projects/status/vd4k18u1lp5btaql/branch/master?svg=true)](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master) __scikit-multilearn__ is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Python packages ([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and follows a similar API to that of [scikit-learn](http://scikit-learn.org/). - __Website:__ [scikit.ml](http://scikit.ml) - __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html) ## Features - __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers). - __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field. - __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API. ## Dependencies In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package. ### Base dependencies ``` scipy numpy future scikit-learn liac-arff # for loading ARFF files requests # for dataset module networkx # for networkX base community detection clusterers python-louvain # for networkX base community detection clusterers keras ``` ### GPL-incurring dependencies for two clusterers ``` python-igraph # for igraph library based clusterers python-graphtool # for graphtool base clusterers ``` Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions) ## Installation To install scikit-multilearn, simply type the following command: ```bash $ pip install scikit-multilearn ``` This will install the latest release from the Python package index. If you wish to install the bleeding-edge version, then clone this repository and run `setup.py`: ```bash $ git clone https://github.com/scikit-multilearn/scikit-multilearn.git $ cd scikit-multilearn $ python setup.py ``` ## Basic Usage Before proceeding to classification, this library assumes that you have a dataset with the following matrices: - `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)` - `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)` Suppose we wanted to use a problem-transformation method called Binary Relevance, which treats each label as a separate single-label classification problem, to a Support-vector machine (SVM) classifier, we simply perform the following tasks: ```python # Import BinaryRelevance from skmultilearn from skmultilearn.problem_transform import BinaryRelevance # Import SVC classifier from sklearn from sklearn.svm import SVC # Setup the classifier classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True]) # Train classifier.fit(X_train, y_train) # Predict y_pred = classifier.predict(X_test) ``` More examples and use-cases can be seen in the [documentation](http://scikit.ml/api/classify.html). For using the MEKA wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper). ## Contributing This project is open for contributions. Here are some of the ways for you to contribute: - Bug reports/fix - Features requests - Use-case demonstrations - Documentation updates In case you want to implement your own multi-label classifier, please read our [Developer's Guide](http://scikit.ml/api/base.html) to help you integrate your implementation in our API. To make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a Pull Request! We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/). ## Cite If you used scikit-multilearn in your research or project, please cite [our work](https://arxiv.org/abs/1702.01460): ```bibtex @ARTICLE{2017arXiv170201460S, author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.}, title = "{A scikit-based Python environment for performing multi-label classification}", journal = {ArXiv e-prints}, archivePrefix = "arXiv", eprint = {1702.01460}, year = 2017, month = feb } ``` %prep %autosetup -n scikit-multilearn-0.2.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-scikit-multilearn -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 0.2.0-1 - Package Spec generated