%global _empty_manifest_terminate_build 0 Name: python-mmdet Version: 3.0.0 Release: 1 Summary: OpenMMLab Detection Toolbox and Benchmark License: Apache License 2.0 URL: https://github.com/open-mmlab/mmdetection Source0: https://mirrors.nju.edu.cn/pypi/web/packages/dd/c2/a8af3485654e6fcd6c814c3998bc8dd25499b220213d38341e71c7cbd69b/mmdet-3.0.0.tar.gz BuildArch: noarch Requires: python3-matplotlib Requires: python3-numpy Requires: python3-pycocotools Requires: python3-scipy Requires: python3-shapely Requires: python3-six Requires: python3-terminaltables Requires: python3-cython Requires: python3-numpy Requires: python3-cityscapesscripts Requires: python3-imagecorruptions Requires: python3-scikit-learn Requires: python3-matplotlib Requires: python3-pycocotools Requires: python3-scipy Requires: python3-shapely Requires: python3-six Requires: python3-terminaltables Requires: python3-cython Requires: python3-numpy Requires: python3-mmcv Requires: python3-mmengine Requires: python3-cityscapesscripts Requires: python3-imagecorruptions Requires: python3-scikit-learn Requires: python3-asynctest Requires: python3-cityscapesscripts Requires: python3-codecov Requires: python3-flake8 Requires: python3-imagecorruptions Requires: python3-instaboostfast Requires: python3-interrogate Requires: python3-isort Requires: python3-kwarray Requires: python3-memory-profiler Requires: python3-mmtrack Requires: python3-onnx Requires: python3-onnxruntime Requires: python3-parameterized Requires: python3-protobuf Requires: python3-psutil Requires: python3-pytest Requires: python3-ubelt Requires: python3-xdoctest Requires: python3-yapf %description
 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 
[![PyPI](https://img.shields.io/pypi/v/mmdet)](https://pypi.org/project/mmdet) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection.readthedocs.io/en/latest/) [![badge](https://github.com/open-mmlab/mmdetection/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmdetection/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection) [![license](https://img.shields.io/github/license/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/blob/main/LICENSE) [![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/issues) [![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/issues) [📘Documentation](https://mmdetection.readthedocs.io/en/latest/) | [🛠️Installation](https://mmdetection.readthedocs.io/en/latest/get_started.html) | [👀Model Zoo](https://mmdetection.readthedocs.io/en/latest/model_zoo.html) | [🆕Update News](https://mmdetection.readthedocs.io/en/latest/notes/changelog.html) | [🚀Ongoing Projects](https://github.com/open-mmlab/mmdetection/projects) | [🤔Reporting Issues](https://github.com/open-mmlab/mmdetection/issues/new/choose)
English | [简体中文](README_zh-CN.md)
## Introduction MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project. The main branch works with **PyTorch 1.6+**.
Major features - **Modular Design** We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules. - **Support of multiple tasks out of box** The toolbox directly supports multiple detection tasks such as **object detection**, **instance segmentation**, **panoptic segmentation**, and **semi-supervised object detection**. - **High efficiency** All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including [Detectron2](https://github.com/facebookresearch/detectron2), [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) and [SimpleDet](https://github.com/TuSimple/simpledet). - **State of the art** The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward. The newly released [RTMDet](configs/rtmdet) also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.
Apart from MMDetection, we also released [MMEngine](https://github.com/open-mmlab/mmengine) for model training and [MMCV](https://github.com/open-mmlab/mmcv) for computer vision research, which are heavily depended on by this toolbox. ## What's New ### Highlight We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet). [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real) | Task | Dataset | AP | FPS(TRT FP16 BS1 3090) | | ------------------------ | ------- | ------------------------------------ | ---------------------- | | Object Detection | COCO | 52.8 | 322 | | Instance Segmentation | COCO | 44.6 | 188 | | Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |
**v3.0.0** was released in 6/4/2023: - Release MMDetection 3.0.0 official version - Support Semi-automatic annotation Base [Label-Studio](projects/LabelStudio) (#10039) - Support [EfficientDet](projects/EfficientDet) in projects (#9810) ## Installation Please refer to [Installation](https://mmdetection.readthedocs.io/en/latest/get_started.html) for installation instructions. ## Getting Started Please see [Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the general introduction of MMDetection. For detailed user guides and advanced guides, please refer to our [documentation](https://mmdetection.readthedocs.io/en/latest/): - User Guides
- [Train & Test](https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#train-test) - [Learn about Configs](https://mmdetection.readthedocs.io/en/latest/user_guides/config.html) - [Inference with existing models](https://mmdetection.readthedocs.io/en/latest/user_guides/inference.html) - [Dataset Prepare](https://mmdetection.readthedocs.io/en/latest/user_guides/dataset_prepare.html) - [Test existing models on standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/test.html) - [Train predefined models on standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/train.html) - [Train with customized datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/train.html#train-with-customized-datasets) - [Train with customized models and standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/new_model.html) - [Finetuning Models](https://mmdetection.readthedocs.io/en/latest/user_guides/finetune.html) - [Test Results Submission](https://mmdetection.readthedocs.io/en/latest/user_guides/test_results_submission.html) - [Weight initialization](https://mmdetection.readthedocs.io/en/latest/user_guides/init_cfg.html) - [Use a single stage detector as RPN](https://mmdetection.readthedocs.io/en/latest/user_guides/single_stage_as_rpn.html) - [Semi-supervised Object Detection](https://mmdetection.readthedocs.io/en/latest/user_guides/semi_det.html) - [Useful Tools](https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#useful-tools)
- Advanced Guides
- [Basic Concepts](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#basic-concepts) - [Component Customization](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#component-customization) - [How to](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#how-to)
We also provide object detection colab tutorial [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](demo/MMDet_Tutorial.ipynb) and instance segmentation colab tutorial [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](demo/MMDet_InstanceSeg_Tutorial.ipynb). To migrate from MMDetection 2.x, please refer to [migration](https://mmdetection.readthedocs.io/en/latest/migration.html). ## Overview of Benchmark and Model Zoo Results and models are available in the [model zoo](docs/en/model_zoo.md).
Architectures
Object Detection Instance Segmentation Panoptic Segmentation Other
  • Contrastive Learning
  • Distillation
  • Semi-Supervised Object Detection
  • Components
    Backbones Necks Loss Common
    Some other methods are also supported in [projects using MMDetection](./docs/en/notes/projects.md). ## FAQ Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions. ## Contributing We appreciate all contributions to improve MMDetection. Ongoing projects can be found in out [GitHub Projects](https://github.com/open-mmlab/mmdetection/projects). Welcome community users to participate in these projects. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline. ## Acknowledgement MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. ## Citation If you use this toolbox or benchmark in your research, please cite this project. ``` @article{mmdetection, title = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark}, author = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua}, journal= {arXiv preprint arXiv:1906.07155}, year={2019} } ``` ## License This project is released under the [Apache 2.0 license](LICENSE). ## Projects in OpenMMLab - [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models. - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. - [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. - [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark. - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox. - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark. - [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark. - [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark. - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark. - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark. - [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark. - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox. - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework. %package -n python3-mmdet Summary: OpenMMLab Detection Toolbox and Benchmark Provides: python-mmdet BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-mmdet
     
    OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
     
    [![PyPI](https://img.shields.io/pypi/v/mmdet)](https://pypi.org/project/mmdet) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection.readthedocs.io/en/latest/) [![badge](https://github.com/open-mmlab/mmdetection/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmdetection/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection) [![license](https://img.shields.io/github/license/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/blob/main/LICENSE) [![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/issues) [![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/issues) [📘Documentation](https://mmdetection.readthedocs.io/en/latest/) | [🛠️Installation](https://mmdetection.readthedocs.io/en/latest/get_started.html) | [👀Model Zoo](https://mmdetection.readthedocs.io/en/latest/model_zoo.html) | [🆕Update News](https://mmdetection.readthedocs.io/en/latest/notes/changelog.html) | [🚀Ongoing Projects](https://github.com/open-mmlab/mmdetection/projects) | [🤔Reporting Issues](https://github.com/open-mmlab/mmdetection/issues/new/choose)
    English | [简体中文](README_zh-CN.md)
    ## Introduction MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project. The main branch works with **PyTorch 1.6+**.
    Major features - **Modular Design** We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules. - **Support of multiple tasks out of box** The toolbox directly supports multiple detection tasks such as **object detection**, **instance segmentation**, **panoptic segmentation**, and **semi-supervised object detection**. - **High efficiency** All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including [Detectron2](https://github.com/facebookresearch/detectron2), [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) and [SimpleDet](https://github.com/TuSimple/simpledet). - **State of the art** The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward. The newly released [RTMDet](configs/rtmdet) also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.
    Apart from MMDetection, we also released [MMEngine](https://github.com/open-mmlab/mmengine) for model training and [MMCV](https://github.com/open-mmlab/mmcv) for computer vision research, which are heavily depended on by this toolbox. ## What's New ### Highlight We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet). [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real) | Task | Dataset | AP | FPS(TRT FP16 BS1 3090) | | ------------------------ | ------- | ------------------------------------ | ---------------------- | | Object Detection | COCO | 52.8 | 322 | | Instance Segmentation | COCO | 44.6 | 188 | | Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |
    **v3.0.0** was released in 6/4/2023: - Release MMDetection 3.0.0 official version - Support Semi-automatic annotation Base [Label-Studio](projects/LabelStudio) (#10039) - Support [EfficientDet](projects/EfficientDet) in projects (#9810) ## Installation Please refer to [Installation](https://mmdetection.readthedocs.io/en/latest/get_started.html) for installation instructions. ## Getting Started Please see [Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the general introduction of MMDetection. For detailed user guides and advanced guides, please refer to our [documentation](https://mmdetection.readthedocs.io/en/latest/): - User Guides
    - [Train & Test](https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#train-test) - [Learn about Configs](https://mmdetection.readthedocs.io/en/latest/user_guides/config.html) - [Inference with existing models](https://mmdetection.readthedocs.io/en/latest/user_guides/inference.html) - [Dataset Prepare](https://mmdetection.readthedocs.io/en/latest/user_guides/dataset_prepare.html) - [Test existing models on standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/test.html) - [Train predefined models on standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/train.html) - [Train with customized datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/train.html#train-with-customized-datasets) - [Train with customized models and standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/new_model.html) - [Finetuning Models](https://mmdetection.readthedocs.io/en/latest/user_guides/finetune.html) - [Test Results Submission](https://mmdetection.readthedocs.io/en/latest/user_guides/test_results_submission.html) - [Weight initialization](https://mmdetection.readthedocs.io/en/latest/user_guides/init_cfg.html) - [Use a single stage detector as RPN](https://mmdetection.readthedocs.io/en/latest/user_guides/single_stage_as_rpn.html) - [Semi-supervised Object Detection](https://mmdetection.readthedocs.io/en/latest/user_guides/semi_det.html) - [Useful Tools](https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#useful-tools)
    - Advanced Guides
    - [Basic Concepts](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#basic-concepts) - [Component Customization](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#component-customization) - [How to](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#how-to)
    We also provide object detection colab tutorial [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](demo/MMDet_Tutorial.ipynb) and instance segmentation colab tutorial [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](demo/MMDet_InstanceSeg_Tutorial.ipynb). To migrate from MMDetection 2.x, please refer to [migration](https://mmdetection.readthedocs.io/en/latest/migration.html). ## Overview of Benchmark and Model Zoo Results and models are available in the [model zoo](docs/en/model_zoo.md).
    Architectures
    Object Detection Instance Segmentation Panoptic Segmentation Other
  • Contrastive Learning
  • Distillation
  • Semi-Supervised Object Detection
  • Components
    Backbones Necks Loss Common
    Some other methods are also supported in [projects using MMDetection](./docs/en/notes/projects.md). ## FAQ Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions. ## Contributing We appreciate all contributions to improve MMDetection. Ongoing projects can be found in out [GitHub Projects](https://github.com/open-mmlab/mmdetection/projects). Welcome community users to participate in these projects. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline. ## Acknowledgement MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. ## Citation If you use this toolbox or benchmark in your research, please cite this project. ``` @article{mmdetection, title = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark}, author = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua}, journal= {arXiv preprint arXiv:1906.07155}, year={2019} } ``` ## License This project is released under the [Apache 2.0 license](LICENSE). ## Projects in OpenMMLab - [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models. - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. - [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. - [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark. - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox. - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark. - [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark. - [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark. - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark. - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark. - [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark. - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox. - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework. %package help Summary: Development documents and examples for mmdet Provides: python3-mmdet-doc %description help
     
    OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
     
    [![PyPI](https://img.shields.io/pypi/v/mmdet)](https://pypi.org/project/mmdet) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection.readthedocs.io/en/latest/) [![badge](https://github.com/open-mmlab/mmdetection/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmdetection/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection) [![license](https://img.shields.io/github/license/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/blob/main/LICENSE) [![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/issues) [![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection.svg)](https://github.com/open-mmlab/mmdetection/issues) [📘Documentation](https://mmdetection.readthedocs.io/en/latest/) | [🛠️Installation](https://mmdetection.readthedocs.io/en/latest/get_started.html) | [👀Model Zoo](https://mmdetection.readthedocs.io/en/latest/model_zoo.html) | [🆕Update News](https://mmdetection.readthedocs.io/en/latest/notes/changelog.html) | [🚀Ongoing Projects](https://github.com/open-mmlab/mmdetection/projects) | [🤔Reporting Issues](https://github.com/open-mmlab/mmdetection/issues/new/choose)
    English | [简体中文](README_zh-CN.md)
    ## Introduction MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project. The main branch works with **PyTorch 1.6+**.
    Major features - **Modular Design** We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules. - **Support of multiple tasks out of box** The toolbox directly supports multiple detection tasks such as **object detection**, **instance segmentation**, **panoptic segmentation**, and **semi-supervised object detection**. - **High efficiency** All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including [Detectron2](https://github.com/facebookresearch/detectron2), [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) and [SimpleDet](https://github.com/TuSimple/simpledet). - **State of the art** The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward. The newly released [RTMDet](configs/rtmdet) also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.
    Apart from MMDetection, we also released [MMEngine](https://github.com/open-mmlab/mmengine) for model training and [MMCV](https://github.com/open-mmlab/mmcv) for computer vision research, which are heavily depended on by this toolbox. ## What's New ### Highlight We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet). [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real) | Task | Dataset | AP | FPS(TRT FP16 BS1 3090) | | ------------------------ | ------- | ------------------------------------ | ---------------------- | | Object Detection | COCO | 52.8 | 322 | | Instance Segmentation | COCO | 44.6 | 188 | | Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |
    **v3.0.0** was released in 6/4/2023: - Release MMDetection 3.0.0 official version - Support Semi-automatic annotation Base [Label-Studio](projects/LabelStudio) (#10039) - Support [EfficientDet](projects/EfficientDet) in projects (#9810) ## Installation Please refer to [Installation](https://mmdetection.readthedocs.io/en/latest/get_started.html) for installation instructions. ## Getting Started Please see [Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the general introduction of MMDetection. For detailed user guides and advanced guides, please refer to our [documentation](https://mmdetection.readthedocs.io/en/latest/): - User Guides
    - [Train & Test](https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#train-test) - [Learn about Configs](https://mmdetection.readthedocs.io/en/latest/user_guides/config.html) - [Inference with existing models](https://mmdetection.readthedocs.io/en/latest/user_guides/inference.html) - [Dataset Prepare](https://mmdetection.readthedocs.io/en/latest/user_guides/dataset_prepare.html) - [Test existing models on standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/test.html) - [Train predefined models on standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/train.html) - [Train with customized datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/train.html#train-with-customized-datasets) - [Train with customized models and standard datasets](https://mmdetection.readthedocs.io/en/latest/user_guides/new_model.html) - [Finetuning Models](https://mmdetection.readthedocs.io/en/latest/user_guides/finetune.html) - [Test Results Submission](https://mmdetection.readthedocs.io/en/latest/user_guides/test_results_submission.html) - [Weight initialization](https://mmdetection.readthedocs.io/en/latest/user_guides/init_cfg.html) - [Use a single stage detector as RPN](https://mmdetection.readthedocs.io/en/latest/user_guides/single_stage_as_rpn.html) - [Semi-supervised Object Detection](https://mmdetection.readthedocs.io/en/latest/user_guides/semi_det.html) - [Useful Tools](https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#useful-tools)
    - Advanced Guides
    - [Basic Concepts](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#basic-concepts) - [Component Customization](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#component-customization) - [How to](https://mmdetection.readthedocs.io/en/latest/advanced_guides/index.html#how-to)
    We also provide object detection colab tutorial [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](demo/MMDet_Tutorial.ipynb) and instance segmentation colab tutorial [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](demo/MMDet_InstanceSeg_Tutorial.ipynb). To migrate from MMDetection 2.x, please refer to [migration](https://mmdetection.readthedocs.io/en/latest/migration.html). ## Overview of Benchmark and Model Zoo Results and models are available in the [model zoo](docs/en/model_zoo.md).
    Architectures
    Object Detection Instance Segmentation Panoptic Segmentation Other
  • Contrastive Learning
  • Distillation
  • Semi-Supervised Object Detection
  • Components
    Backbones Necks Loss Common
    Some other methods are also supported in [projects using MMDetection](./docs/en/notes/projects.md). ## FAQ Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions. ## Contributing We appreciate all contributions to improve MMDetection. Ongoing projects can be found in out [GitHub Projects](https://github.com/open-mmlab/mmdetection/projects). Welcome community users to participate in these projects. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline. ## Acknowledgement MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. ## Citation If you use this toolbox or benchmark in your research, please cite this project. ``` @article{mmdetection, title = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark}, author = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua}, journal= {arXiv preprint arXiv:1906.07155}, year={2019} } ``` ## License This project is released under the [Apache 2.0 license](LICENSE). ## Projects in OpenMMLab - [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models. - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. - [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. - [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark. - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox. - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark. - [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark. - [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark. - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark. - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark. - [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark. - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox. - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework. %prep %autosetup -n mmdet-3.0.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-mmdet -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 3.0.0-1 - Package Spec generated