%global _empty_manifest_terminate_build 0 Name: python-shparkley Version: 1.0.1 Release: 1 Summary: Scaling Shapley Value computation using Spark License: BSD License URL: https://github.com/Affirm/shparkley Source0: https://mirrors.nju.edu.cn/pypi/web/packages/45/d3/cc2bdceda131aee61f15e9e734d4ed99c1132e9cb5e9f9f70913174d98f1/shparkley-1.0.1.tar.gz BuildArch: noarch Requires: python3-future Requires: python3-mock Requires: python3-numpy Requires: python3-pyspark %description Shparkley is a PySpark implementation of `Shapley values `_ which uses a `monte-carlo approximation `_ algorithm. Given a dataset and machine learning model, Shparkley can compute Shapley values for all features for a feature vector. Shparkley also handles training weights and is model-agnostic. %package -n python3-shparkley Summary: Scaling Shapley Value computation using Spark Provides: python-shparkley BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-shparkley Shparkley is a PySpark implementation of `Shapley values `_ which uses a `monte-carlo approximation `_ algorithm. Given a dataset and machine learning model, Shparkley can compute Shapley values for all features for a feature vector. Shparkley also handles training weights and is model-agnostic. %package help Summary: Development documents and examples for shparkley Provides: python3-shparkley-doc %description help Shparkley is a PySpark implementation of `Shapley values `_ which uses a `monte-carlo approximation `_ algorithm. Given a dataset and machine learning model, Shparkley can compute Shapley values for all features for a feature vector. Shparkley also handles training weights and is model-agnostic. %prep %autosetup -n shparkley-1.0.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-shparkley -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 1.0.1-1 - Package Spec generated