%global _empty_manifest_terminate_build 0 Name: python-Omnis Version: 0.0.10.42 Release: 1 Summary: Deep Learning for everyone License: MIT License URL: https://github.com/omnis-labs-company/omnis Source0: https://mirrors.nju.edu.cn/pypi/web/packages/01/9c/62b024b501914ff0c064bcc3045d50e434dc9f5e0a5f3eaf14ea4e853738/Omnis-0.0.10.42.tar.gz BuildArch: noarch %description ## Getting started: Implement a deep learning application with 4 lines of code! The core data structure of Omnis is Application which is designed to be easy to use in each field. Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset: ```python from omnis.application.image_processing.image_classification.image_classification import ImageClassification ``` Choose an application: ```python image_classifier = ImageClassification() ``` Train: ```python image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121') ``` Now you can use the application to classify images: ```python prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion') print(prediction_result) ``` Save / Load: ```python image_classifier.save(model_path="weights.h5") ``` ```python image_classifier = ImageClassification(model_path="weights.h5") ``` For a more in-depth tutorial about Omnis, you can check out: %package -n python3-Omnis Summary: Deep Learning for everyone Provides: python-Omnis BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-Omnis ## Getting started: Implement a deep learning application with 4 lines of code! The core data structure of Omnis is Application which is designed to be easy to use in each field. Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset: ```python from omnis.application.image_processing.image_classification.image_classification import ImageClassification ``` Choose an application: ```python image_classifier = ImageClassification() ``` Train: ```python image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121') ``` Now you can use the application to classify images: ```python prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion') print(prediction_result) ``` Save / Load: ```python image_classifier.save(model_path="weights.h5") ``` ```python image_classifier = ImageClassification(model_path="weights.h5") ``` For a more in-depth tutorial about Omnis, you can check out: %package help Summary: Development documents and examples for Omnis Provides: python3-Omnis-doc %description help ## Getting started: Implement a deep learning application with 4 lines of code! The core data structure of Omnis is Application which is designed to be easy to use in each field. Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset: ```python from omnis.application.image_processing.image_classification.image_classification import ImageClassification ``` Choose an application: ```python image_classifier = ImageClassification() ``` Train: ```python image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121') ``` Now you can use the application to classify images: ```python prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion') print(prediction_result) ``` Save / Load: ```python image_classifier.save(model_path="weights.h5") ``` ```python image_classifier = ImageClassification(model_path="weights.h5") ``` For a more in-depth tutorial about Omnis, you can check out: %prep %autosetup -n Omnis-0.0.10.42 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-Omnis -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed Apr 12 2023 Python_Bot - 0.0.10.42-1 - Package Spec generated