%global _empty_manifest_terminate_build 0 Name: python-marshmallow-dataclass Version: 8.5.13 Release: 1 Summary: Python library to convert dataclasses into marshmallow schemas. License: MIT URL: https://github.com/lovasoa/marshmallow_dataclass Source0: https://mirrors.nju.edu.cn/pypi/web/packages/5c/42/f3f6dbc21ae230a3cab7e2fdc0a8701751ea2832ef17e631bad159af48c5/marshmallow_dataclass-8.5.13.tar.gz BuildArch: noarch Requires: python3-marshmallow Requires: python3-typing-inspect Requires: python3-typing-extensions Requires: python3-dataclasses Requires: python3-types-dataclasses Requires: python3-typeguard Requires: python3-pre-commit Requires: python3-sphinx Requires: python3-pytest Requires: python3-pytest-mypy-plugins Requires: python3-marshmallow-enum Requires: python3-marshmallow Requires: python3-sphinx Requires: python3-marshmallow-enum Requires: python3-marshmallow Requires: python3-pre-commit Requires: python3-pytest Requires: python3-pytest-mypy-plugins Requires: python3-typeguard %description # marshmallow-dataclass [![Build Status](https://travis-ci.org/lovasoa/marshmallow_dataclass.svg?branch=master)](https://travis-ci.org/lovasoa/marshmallow_dataclass) [![PyPI version](https://badge.fury.io/py/marshmallow-dataclass.svg)](https://badge.fury.io/py/marshmallow-dataclass) [![marshmallow 3 compatible](https://badgen.net/badge/marshmallow/3)](https://marshmallow.readthedocs.io/en/latest/upgrading.html) [![download stats](https://img.shields.io/pypi/dm/marshmallow-dataclass.svg)](https://pypistats.org/packages/marshmallow-dataclass) Automatic generation of [marshmallow](https://marshmallow.readthedocs.io/) schemas from dataclasses. ```python from dataclasses import dataclass, field from typing import List, Optional import marshmallow_dataclass import marshmallow.validate @dataclass class Building: # field metadata is used to instantiate the marshmallow field height: float = field(metadata={"validate": marshmallow.validate.Range(min=0)}) name: str = field(default="anonymous") @dataclass class City: name: Optional[str] buildings: List[Building] = field(default_factory=list) city_schema = marshmallow_dataclass.class_schema(City)() city = city_schema.load( {"name": "Paris", "buildings": [{"name": "Eiffel Tower", "height": 324}]} ) # => City(name='Paris', buildings=[Building(height=324.0, name='Eiffel Tower')]) city_dict = city_schema.dump(city) # => {'name': 'Paris', 'buildings': [{'name': 'Eiffel Tower', 'height': 324.0}]} ``` ## Why Using schemas in Python often means having both a class to represent your data and a class to represent its schema, which results in duplicated code that could fall out of sync. As of Python 3.6, types can be defined for class members, which allows libraries to generate schemas automatically. Therefore, you can document your APIs in a way that allows you to statically check that the code matches the documentation. ## Installation This package [is hosted on PyPI](https://pypi.org/project/marshmallow-dataclass/). ```shell pip3 install marshmallow-dataclass ``` You may optionally install the following extras: - `enum` : enum support for marshmallow versions <3.18 [marshmallow-enum](https://github.com/justanr/marshmallow_enum). - `union` : for translating python [`Union` types](https://docs.python.org/3/library/typing.html#typing.Union) to union fields. ```shell pip3 install "marshmallow-dataclass[enum,union]" ``` ### marshmallow 2 support `marshmallow-dataclass` no longer supports marshmallow 2. Install `marshmallow_dataclass<6.0` if you need marshmallow 2 compatibility. ## Usage Use the [`class_schema`](https://lovasoa.github.io/marshmallow_dataclass/html/marshmallow_dataclass.html#marshmallow_dataclass.class_schema) function to generate a marshmallow [Schema](https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema) class from a [`dataclass`](https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass). ```python from dataclasses import dataclass from datetime import date import marshmallow_dataclass @dataclass class Person: name: str birth: date PersonSchema = marshmallow_dataclass.class_schema(Person) ``` The type of your fields must be either basic [types supported by marshmallow](https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema.TYPE_MAPPING) (such as `float`, `str`, `bytes`, `datetime`, ...), `Union`, or other dataclasses. ### Union (de)serialization coercion Typically the Union type; `Union[X, Y]` means—from a set theory perspective—either `X` or `Y`, i.e., an unordered set, howevever the order of the sub-types defines the precedence when attempting to ether deserialize or serialize the value per [here](https://github.com/lovasoa/marshmallow_dataclass/blob/master/marshmallow_dataclass/union_field.py). For example, ```python from typing import Union from dataclasses import dataclass @dataclass class Person: name: str age: Union[int, float] PersonSchema = marshmallow_dataclass.class_schema(Person) PersonSchema().load({"name": "jane", "age": 50.0}) # => Person(name="jane", age=50) ``` will first (sucessfully) try to coerce `50.0` to an `int`. If coercion is not desired the `Any` type can be used with the caveat that values will not be type checked without additional [validation](https://marshmallow.readthedocs.io/en/stable/marshmallow.validate.html). ### Customizing generated fields To pass arguments to the generated marshmallow fields (e.g., `validate`, `load_only`, `dump_only`, etc.), pass them to the `metadata` argument of the [`field`](https://docs.python.org/3/library/dataclasses.html#dataclasses.field) function. Note that starting with version 4, marshmallow will disallow passing arbitrary arguments, so any additional metadata should itself be put in its own `metadata` dict: ```python from dataclasses import dataclass, field import marshmallow_dataclass import marshmallow.validate @dataclass class Person: name: str = field( metadata=dict( load_only=True, metadata=dict(description="The person's first name") ) ) height: float = field(metadata=dict(validate=marshmallow.validate.Range(min=0))) PersonSchema = marshmallow_dataclass.class_schema(Person) ``` ### `@dataclass` shortcut `marshmallow_dataclass` provides a `@dataclass` decorator that behaves like the standard library's `@dataclasses.dataclass` and adds a `Schema` attribute with the generated marshmallow [Schema](https://marshmallow.readthedocs.io/en/2.x-line/api_reference.html#marshmallow.Schema). ```python # Use marshmallow_dataclass's @dataclass shortcut from marshmallow_dataclass import dataclass @dataclass class Point: x: float y: float Point.Schema().dump(Point(4, 2)) # => {'x': 4, 'y': 2} ``` Note: Since the `.Schema` property is added dynamically, it can confuse type checkers. To avoid that, you can declare `Schema` as a [`ClassVar`](https://docs.python.org/3/library/typing.html#typing.ClassVar). ```python from typing import ClassVar, Type from marshmallow_dataclass import dataclass from marshmallow import Schema @dataclass class Point: x: float y: float Schema: ClassVar[Type[Schema]] = Schema ``` ### Customizing the base Schema It is also possible to derive all schemas from your own base Schema class (see [marshmallow's documentation about extending `Schema`](https://marshmallow.readthedocs.io/en/stable/extending.html)). This allows you to implement custom (de)serialization behavior, for instance specifying a custom mapping between your classes and marshmallow fields, or renaming fields on serialization. #### Custom mapping between classes and fields ```python class BaseSchema(marshmallow.Schema): TYPE_MAPPING = {CustomType: CustomField, List: CustomListField} class Sample: my_custom: CustomType my_custom_list: List[int] SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=BaseSchema) # SampleSchema now serializes my_custom using the CustomField marshmallow field # and serializes my_custom_list using the CustomListField marshmallow field ``` #### Renaming fields on serialization ```python import marshmallow import marshmallow_dataclass class UppercaseSchema(marshmallow.Schema): """A Schema that marshals data with uppercased keys.""" def on_bind_field(self, field_name, field_obj): field_obj.data_key = (field_obj.data_key or field_name).upper() class Sample: my_text: str my_int: int SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=UppercaseSchema) SampleSchema().dump(Sample(my_text="warm words", my_int=1)) # -> {"MY_TEXT": "warm words", "MY_INT": 1} ``` You can also pass `base_schema` to `marshmallow_dataclass.dataclass`. ```python @marshmallow_dataclass.dataclass(base_schema=UppercaseSchema) class Sample: my_text: str my_int: int ``` See [marshmallow's documentation about extending `Schema`](https://marshmallow.readthedocs.io/en/stable/extending.html). ### Custom NewType declarations This library exports a `NewType` function to create types that generate [customized marshmallow fields](https://marshmallow.readthedocs.io/en/stable/custom_fields.html#creating-a-field-class). Keyword arguments to `NewType` are passed to the marshmallow field constructor. ```python import marshmallow.validate from marshmallow_dataclass import NewType IPv4 = NewType( "IPv4", str, validate=marshmallow.validate.Regexp(r"^([0-9]{1,3}\\.){3}[0-9]{1,3}$") ) ``` You can also pass a marshmallow field to `NewType`. ```python import marshmallow from marshmallow_dataclass import NewType Email = NewType("Email", str, field=marshmallow.fields.Email) ``` For convenience, some custom types are provided: ```python from marshmallow_dataclass.typing import Email, Url ``` Note: if you are using `mypy`, you will notice that `mypy` throws an error if a variable defined with `NewType` is used in a type annotation. To resolve this, add the `marshmallow_dataclass.mypy` plugin to your `mypy` configuration, e.g.: ```ini [mypy] plugins = marshmallow_dataclass.mypy # ... ``` ### `Meta` options [`Meta` options](https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema.Meta) are set the same way as a marshmallow `Schema`. ```python from marshmallow_dataclass import dataclass @dataclass class Point: x: float y: float class Meta: ordered = True ``` ## Documentation The project documentation is hosted on GitHub Pages: https://lovasoa.github.io/marshmallow_dataclass/ ## Contributing To install this project and make changes to it locally, follow the instructions in [`CONTRIBUTING.md`](./CONTRIBUTING.md). %package -n python3-marshmallow-dataclass Summary: Python library to convert dataclasses into marshmallow schemas. Provides: python-marshmallow-dataclass BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-marshmallow-dataclass # marshmallow-dataclass [![Build Status](https://travis-ci.org/lovasoa/marshmallow_dataclass.svg?branch=master)](https://travis-ci.org/lovasoa/marshmallow_dataclass) [![PyPI version](https://badge.fury.io/py/marshmallow-dataclass.svg)](https://badge.fury.io/py/marshmallow-dataclass) [![marshmallow 3 compatible](https://badgen.net/badge/marshmallow/3)](https://marshmallow.readthedocs.io/en/latest/upgrading.html) [![download stats](https://img.shields.io/pypi/dm/marshmallow-dataclass.svg)](https://pypistats.org/packages/marshmallow-dataclass) Automatic generation of [marshmallow](https://marshmallow.readthedocs.io/) schemas from dataclasses. ```python from dataclasses import dataclass, field from typing import List, Optional import marshmallow_dataclass import marshmallow.validate @dataclass class Building: # field metadata is used to instantiate the marshmallow field height: float = field(metadata={"validate": marshmallow.validate.Range(min=0)}) name: str = field(default="anonymous") @dataclass class City: name: Optional[str] buildings: List[Building] = field(default_factory=list) city_schema = marshmallow_dataclass.class_schema(City)() city = city_schema.load( {"name": "Paris", "buildings": [{"name": "Eiffel Tower", "height": 324}]} ) # => City(name='Paris', buildings=[Building(height=324.0, name='Eiffel Tower')]) city_dict = city_schema.dump(city) # => {'name': 'Paris', 'buildings': [{'name': 'Eiffel Tower', 'height': 324.0}]} ``` ## Why Using schemas in Python often means having both a class to represent your data and a class to represent its schema, which results in duplicated code that could fall out of sync. As of Python 3.6, types can be defined for class members, which allows libraries to generate schemas automatically. Therefore, you can document your APIs in a way that allows you to statically check that the code matches the documentation. ## Installation This package [is hosted on PyPI](https://pypi.org/project/marshmallow-dataclass/). ```shell pip3 install marshmallow-dataclass ``` You may optionally install the following extras: - `enum` : enum support for marshmallow versions <3.18 [marshmallow-enum](https://github.com/justanr/marshmallow_enum). - `union` : for translating python [`Union` types](https://docs.python.org/3/library/typing.html#typing.Union) to union fields. ```shell pip3 install "marshmallow-dataclass[enum,union]" ``` ### marshmallow 2 support `marshmallow-dataclass` no longer supports marshmallow 2. Install `marshmallow_dataclass<6.0` if you need marshmallow 2 compatibility. ## Usage Use the [`class_schema`](https://lovasoa.github.io/marshmallow_dataclass/html/marshmallow_dataclass.html#marshmallow_dataclass.class_schema) function to generate a marshmallow [Schema](https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema) class from a [`dataclass`](https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass). ```python from dataclasses import dataclass from datetime import date import marshmallow_dataclass @dataclass class Person: name: str birth: date PersonSchema = marshmallow_dataclass.class_schema(Person) ``` The type of your fields must be either basic [types supported by marshmallow](https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema.TYPE_MAPPING) (such as `float`, `str`, `bytes`, `datetime`, ...), `Union`, or other dataclasses. ### Union (de)serialization coercion Typically the Union type; `Union[X, Y]` means—from a set theory perspective—either `X` or `Y`, i.e., an unordered set, howevever the order of the sub-types defines the precedence when attempting to ether deserialize or serialize the value per [here](https://github.com/lovasoa/marshmallow_dataclass/blob/master/marshmallow_dataclass/union_field.py). For example, ```python from typing import Union from dataclasses import dataclass @dataclass class Person: name: str age: Union[int, float] PersonSchema = marshmallow_dataclass.class_schema(Person) PersonSchema().load({"name": "jane", "age": 50.0}) # => Person(name="jane", age=50) ``` will first (sucessfully) try to coerce `50.0` to an `int`. If coercion is not desired the `Any` type can be used with the caveat that values will not be type checked without additional [validation](https://marshmallow.readthedocs.io/en/stable/marshmallow.validate.html). ### Customizing generated fields To pass arguments to the generated marshmallow fields (e.g., `validate`, `load_only`, `dump_only`, etc.), pass them to the `metadata` argument of the [`field`](https://docs.python.org/3/library/dataclasses.html#dataclasses.field) function. Note that starting with version 4, marshmallow will disallow passing arbitrary arguments, so any additional metadata should itself be put in its own `metadata` dict: ```python from dataclasses import dataclass, field import marshmallow_dataclass import marshmallow.validate @dataclass class Person: name: str = field( metadata=dict( load_only=True, metadata=dict(description="The person's first name") ) ) height: float = field(metadata=dict(validate=marshmallow.validate.Range(min=0))) PersonSchema = marshmallow_dataclass.class_schema(Person) ``` ### `@dataclass` shortcut `marshmallow_dataclass` provides a `@dataclass` decorator that behaves like the standard library's `@dataclasses.dataclass` and adds a `Schema` attribute with the generated marshmallow [Schema](https://marshmallow.readthedocs.io/en/2.x-line/api_reference.html#marshmallow.Schema). ```python # Use marshmallow_dataclass's @dataclass shortcut from marshmallow_dataclass import dataclass @dataclass class Point: x: float y: float Point.Schema().dump(Point(4, 2)) # => {'x': 4, 'y': 2} ``` Note: Since the `.Schema` property is added dynamically, it can confuse type checkers. To avoid that, you can declare `Schema` as a [`ClassVar`](https://docs.python.org/3/library/typing.html#typing.ClassVar). ```python from typing import ClassVar, Type from marshmallow_dataclass import dataclass from marshmallow import Schema @dataclass class Point: x: float y: float Schema: ClassVar[Type[Schema]] = Schema ``` ### Customizing the base Schema It is also possible to derive all schemas from your own base Schema class (see [marshmallow's documentation about extending `Schema`](https://marshmallow.readthedocs.io/en/stable/extending.html)). This allows you to implement custom (de)serialization behavior, for instance specifying a custom mapping between your classes and marshmallow fields, or renaming fields on serialization. #### Custom mapping between classes and fields ```python class BaseSchema(marshmallow.Schema): TYPE_MAPPING = {CustomType: CustomField, List: CustomListField} class Sample: my_custom: CustomType my_custom_list: List[int] SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=BaseSchema) # SampleSchema now serializes my_custom using the CustomField marshmallow field # and serializes my_custom_list using the CustomListField marshmallow field ``` #### Renaming fields on serialization ```python import marshmallow import marshmallow_dataclass class UppercaseSchema(marshmallow.Schema): """A Schema that marshals data with uppercased keys.""" def on_bind_field(self, field_name, field_obj): field_obj.data_key = (field_obj.data_key or field_name).upper() class Sample: my_text: str my_int: int SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=UppercaseSchema) SampleSchema().dump(Sample(my_text="warm words", my_int=1)) # -> {"MY_TEXT": "warm words", "MY_INT": 1} ``` You can also pass `base_schema` to `marshmallow_dataclass.dataclass`. ```python @marshmallow_dataclass.dataclass(base_schema=UppercaseSchema) class Sample: my_text: str my_int: int ``` See [marshmallow's documentation about extending `Schema`](https://marshmallow.readthedocs.io/en/stable/extending.html). ### Custom NewType declarations This library exports a `NewType` function to create types that generate [customized marshmallow fields](https://marshmallow.readthedocs.io/en/stable/custom_fields.html#creating-a-field-class). Keyword arguments to `NewType` are passed to the marshmallow field constructor. ```python import marshmallow.validate from marshmallow_dataclass import NewType IPv4 = NewType( "IPv4", str, validate=marshmallow.validate.Regexp(r"^([0-9]{1,3}\\.){3}[0-9]{1,3}$") ) ``` You can also pass a marshmallow field to `NewType`. ```python import marshmallow from marshmallow_dataclass import NewType Email = NewType("Email", str, field=marshmallow.fields.Email) ``` For convenience, some custom types are provided: ```python from marshmallow_dataclass.typing import Email, Url ``` Note: if you are using `mypy`, you will notice that `mypy` throws an error if a variable defined with `NewType` is used in a type annotation. To resolve this, add the `marshmallow_dataclass.mypy` plugin to your `mypy` configuration, e.g.: ```ini [mypy] plugins = marshmallow_dataclass.mypy # ... ``` ### `Meta` options [`Meta` options](https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema.Meta) are set the same way as a marshmallow `Schema`. ```python from marshmallow_dataclass import dataclass @dataclass class Point: x: float y: float class Meta: ordered = True ``` ## Documentation The project documentation is hosted on GitHub Pages: https://lovasoa.github.io/marshmallow_dataclass/ ## Contributing To install this project and make changes to it locally, follow the instructions in [`CONTRIBUTING.md`](./CONTRIBUTING.md). %package help Summary: Development documents and examples for marshmallow-dataclass Provides: python3-marshmallow-dataclass-doc %description help # marshmallow-dataclass [![Build Status](https://travis-ci.org/lovasoa/marshmallow_dataclass.svg?branch=master)](https://travis-ci.org/lovasoa/marshmallow_dataclass) [![PyPI version](https://badge.fury.io/py/marshmallow-dataclass.svg)](https://badge.fury.io/py/marshmallow-dataclass) [![marshmallow 3 compatible](https://badgen.net/badge/marshmallow/3)](https://marshmallow.readthedocs.io/en/latest/upgrading.html) [![download stats](https://img.shields.io/pypi/dm/marshmallow-dataclass.svg)](https://pypistats.org/packages/marshmallow-dataclass) Automatic generation of [marshmallow](https://marshmallow.readthedocs.io/) schemas from dataclasses. ```python from dataclasses import dataclass, field from typing import List, Optional import marshmallow_dataclass import marshmallow.validate @dataclass class Building: # field metadata is used to instantiate the marshmallow field height: float = field(metadata={"validate": marshmallow.validate.Range(min=0)}) name: str = field(default="anonymous") @dataclass class City: name: Optional[str] buildings: List[Building] = field(default_factory=list) city_schema = marshmallow_dataclass.class_schema(City)() city = city_schema.load( {"name": "Paris", "buildings": [{"name": "Eiffel Tower", "height": 324}]} ) # => City(name='Paris', buildings=[Building(height=324.0, name='Eiffel Tower')]) city_dict = city_schema.dump(city) # => {'name': 'Paris', 'buildings': [{'name': 'Eiffel Tower', 'height': 324.0}]} ``` ## Why Using schemas in Python often means having both a class to represent your data and a class to represent its schema, which results in duplicated code that could fall out of sync. As of Python 3.6, types can be defined for class members, which allows libraries to generate schemas automatically. Therefore, you can document your APIs in a way that allows you to statically check that the code matches the documentation. ## Installation This package [is hosted on PyPI](https://pypi.org/project/marshmallow-dataclass/). ```shell pip3 install marshmallow-dataclass ``` You may optionally install the following extras: - `enum` : enum support for marshmallow versions <3.18 [marshmallow-enum](https://github.com/justanr/marshmallow_enum). - `union` : for translating python [`Union` types](https://docs.python.org/3/library/typing.html#typing.Union) to union fields. ```shell pip3 install "marshmallow-dataclass[enum,union]" ``` ### marshmallow 2 support `marshmallow-dataclass` no longer supports marshmallow 2. Install `marshmallow_dataclass<6.0` if you need marshmallow 2 compatibility. ## Usage Use the [`class_schema`](https://lovasoa.github.io/marshmallow_dataclass/html/marshmallow_dataclass.html#marshmallow_dataclass.class_schema) function to generate a marshmallow [Schema](https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema) class from a [`dataclass`](https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass). ```python from dataclasses import dataclass from datetime import date import marshmallow_dataclass @dataclass class Person: name: str birth: date PersonSchema = marshmallow_dataclass.class_schema(Person) ``` The type of your fields must be either basic [types supported by marshmallow](https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema.TYPE_MAPPING) (such as `float`, `str`, `bytes`, `datetime`, ...), `Union`, or other dataclasses. ### Union (de)serialization coercion Typically the Union type; `Union[X, Y]` means—from a set theory perspective—either `X` or `Y`, i.e., an unordered set, howevever the order of the sub-types defines the precedence when attempting to ether deserialize or serialize the value per [here](https://github.com/lovasoa/marshmallow_dataclass/blob/master/marshmallow_dataclass/union_field.py). For example, ```python from typing import Union from dataclasses import dataclass @dataclass class Person: name: str age: Union[int, float] PersonSchema = marshmallow_dataclass.class_schema(Person) PersonSchema().load({"name": "jane", "age": 50.0}) # => Person(name="jane", age=50) ``` will first (sucessfully) try to coerce `50.0` to an `int`. If coercion is not desired the `Any` type can be used with the caveat that values will not be type checked without additional [validation](https://marshmallow.readthedocs.io/en/stable/marshmallow.validate.html). ### Customizing generated fields To pass arguments to the generated marshmallow fields (e.g., `validate`, `load_only`, `dump_only`, etc.), pass them to the `metadata` argument of the [`field`](https://docs.python.org/3/library/dataclasses.html#dataclasses.field) function. Note that starting with version 4, marshmallow will disallow passing arbitrary arguments, so any additional metadata should itself be put in its own `metadata` dict: ```python from dataclasses import dataclass, field import marshmallow_dataclass import marshmallow.validate @dataclass class Person: name: str = field( metadata=dict( load_only=True, metadata=dict(description="The person's first name") ) ) height: float = field(metadata=dict(validate=marshmallow.validate.Range(min=0))) PersonSchema = marshmallow_dataclass.class_schema(Person) ``` ### `@dataclass` shortcut `marshmallow_dataclass` provides a `@dataclass` decorator that behaves like the standard library's `@dataclasses.dataclass` and adds a `Schema` attribute with the generated marshmallow [Schema](https://marshmallow.readthedocs.io/en/2.x-line/api_reference.html#marshmallow.Schema). ```python # Use marshmallow_dataclass's @dataclass shortcut from marshmallow_dataclass import dataclass @dataclass class Point: x: float y: float Point.Schema().dump(Point(4, 2)) # => {'x': 4, 'y': 2} ``` Note: Since the `.Schema` property is added dynamically, it can confuse type checkers. To avoid that, you can declare `Schema` as a [`ClassVar`](https://docs.python.org/3/library/typing.html#typing.ClassVar). ```python from typing import ClassVar, Type from marshmallow_dataclass import dataclass from marshmallow import Schema @dataclass class Point: x: float y: float Schema: ClassVar[Type[Schema]] = Schema ``` ### Customizing the base Schema It is also possible to derive all schemas from your own base Schema class (see [marshmallow's documentation about extending `Schema`](https://marshmallow.readthedocs.io/en/stable/extending.html)). This allows you to implement custom (de)serialization behavior, for instance specifying a custom mapping between your classes and marshmallow fields, or renaming fields on serialization. #### Custom mapping between classes and fields ```python class BaseSchema(marshmallow.Schema): TYPE_MAPPING = {CustomType: CustomField, List: CustomListField} class Sample: my_custom: CustomType my_custom_list: List[int] SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=BaseSchema) # SampleSchema now serializes my_custom using the CustomField marshmallow field # and serializes my_custom_list using the CustomListField marshmallow field ``` #### Renaming fields on serialization ```python import marshmallow import marshmallow_dataclass class UppercaseSchema(marshmallow.Schema): """A Schema that marshals data with uppercased keys.""" def on_bind_field(self, field_name, field_obj): field_obj.data_key = (field_obj.data_key or field_name).upper() class Sample: my_text: str my_int: int SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=UppercaseSchema) SampleSchema().dump(Sample(my_text="warm words", my_int=1)) # -> {"MY_TEXT": "warm words", "MY_INT": 1} ``` You can also pass `base_schema` to `marshmallow_dataclass.dataclass`. ```python @marshmallow_dataclass.dataclass(base_schema=UppercaseSchema) class Sample: my_text: str my_int: int ``` See [marshmallow's documentation about extending `Schema`](https://marshmallow.readthedocs.io/en/stable/extending.html). ### Custom NewType declarations This library exports a `NewType` function to create types that generate [customized marshmallow fields](https://marshmallow.readthedocs.io/en/stable/custom_fields.html#creating-a-field-class). Keyword arguments to `NewType` are passed to the marshmallow field constructor. ```python import marshmallow.validate from marshmallow_dataclass import NewType IPv4 = NewType( "IPv4", str, validate=marshmallow.validate.Regexp(r"^([0-9]{1,3}\\.){3}[0-9]{1,3}$") ) ``` You can also pass a marshmallow field to `NewType`. ```python import marshmallow from marshmallow_dataclass import NewType Email = NewType("Email", str, field=marshmallow.fields.Email) ``` For convenience, some custom types are provided: ```python from marshmallow_dataclass.typing import Email, Url ``` Note: if you are using `mypy`, you will notice that `mypy` throws an error if a variable defined with `NewType` is used in a type annotation. To resolve this, add the `marshmallow_dataclass.mypy` plugin to your `mypy` configuration, e.g.: ```ini [mypy] plugins = marshmallow_dataclass.mypy # ... ``` ### `Meta` options [`Meta` options](https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema.Meta) are set the same way as a marshmallow `Schema`. ```python from marshmallow_dataclass import dataclass @dataclass class Point: x: float y: float class Meta: ordered = True ``` ## Documentation The project documentation is hosted on GitHub Pages: https://lovasoa.github.io/marshmallow_dataclass/ ## Contributing To install this project and make changes to it locally, follow the instructions in [`CONTRIBUTING.md`](./CONTRIBUTING.md). %prep %autosetup -n marshmallow-dataclass-8.5.13 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-marshmallow-dataclass -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Apr 21 2023 Python_Bot - 8.5.13-1 - Package Spec generated