%global _empty_manifest_terminate_build 0
Name: python-gluonts
Version: 0.12.7
Release: 1
Summary: Probabilistic time series modeling in Python.
License: Apache License 2.0
URL: https://github.com/awslabs/gluonts/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/7d/d7/32ce8ef7371399230c301e1d2d9bbffb5b962516afc9f4ce5439a25843fc/gluonts-0.12.7.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-pydantic
Requires: python3-tqdm
Requires: python3-toolz
Requires: python3-typing-extensions
Requires: python3-prophet
Requires: python3-rpy2
Requires: python3-pyarrow
Requires: python3-pyarrow
Requires: python3-ipython
Requires: python3-ipykernel
Requires: python3-nbconvert
Requires: python3-nbsphinx
Requires: python3-notedown
Requires: python3-pytest-runner
Requires: python3-recommonmark
Requires: python3-sphinx
Requires: python3-docutils
Requires: python3-optuna
Requires: python3-furo
Requires: python3-m2r2
Requires: python3-myst-parser
Requires: python3-click
Requires: python3-orjson
Requires: python3-black
Requires: python3-holidays
Requires: python3-matplotlib
Requires: python3-pandas
Requires: python3-flaky
Requires: python3-pytest-cov
Requires: python3-pytest-timeout
Requires: python3-pytest-xdist
Requires: python3-pytest
Requires: python3-ujson
Requires: python3-requests
Requires: python3-flask
Requires: python3-gunicorn
Requires: python3-sagemaker
Requires: python3-s3fs
Requires: python3-fsspec
Requires: python3-pyarrow
Requires: python3-pyarrow
Requires: python3-s3fs
Requires: python3-ipython
Requires: python3-ipykernel
Requires: python3-nbconvert
Requires: python3-nbsphinx
Requires: python3-notedown
Requires: python3-pytest-runner
Requires: python3-recommonmark
Requires: python3-sphinx
Requires: python3-docutils
Requires: python3-optuna
Requires: python3-furo
Requires: python3-m2r2
Requires: python3-myst-parser
Requires: python3-click
Requires: python3-orjson
Requires: python3-black
Requires: python3-holidays
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-mxnet
Requires: python3-orjson
Requires: python3-pyarrow
Requires: python3-pyarrow
Requires: python3-flask
Requires: python3-gunicorn
Requires: python3-torch
Requires: python3-pytorch-lightning
Requires: python3-protobuf
Requires: python3-scipy
Requires: python3-scipy
%description
# GluonTS - Probabilistic Time Series Modeling in Python
[](https://pypi.org/project/gluonts/)
[](./LICENSE)
[](https://ts.gluon.ai/)
[](https://ts.gluon.ai/dev/)
[](https://pepy.tech/project/gluonts)
GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models,
based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org).
## Installation
GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`:
```bash
# support for mxnet models, faster datasets
pip install "gluonts[mxnet,pro]"
# support for torch models, faster datasets
pip install "gluonts[torch,pro]"
```
## Simple Example
To illustrate how to use GluonTS, we train a DeepAR-model and make predictions
using the simple "airpassengers" dataset. The dataset consists of a single
time series, containing monthly international passengers between the years
1949 and 1960, a total of 144 values (12 years * 12 months). We split the
dataset into train and test parts, by removing the last three years (36 month)
from the train data. Thus, we will train a model on just the first nine years
of data.
```py
import pandas as pd
import matplotlib.pyplot as plt
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.mx import DeepAREstimator, Trainer
# Load data from a CSV file into a PandasDataset
df = pd.read_csv(
"https://raw.githubusercontent.com/AileenNielsen/"
"TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv",
index_col=0,
parse_dates=True,
)
dataset = PandasDataset(df, target="#Passengers")
# Train a DeepAR model on all data but the last 36 months
training_data, test_gen = split(dataset, offset=-36)
model = DeepAREstimator(
prediction_length=12, freq="M", trainer=Trainer(epochs=5)
).train(training_data)
# Generate test instances and predictions for them
test_data = test_gen.generate_instances(prediction_length=12, windows=3)
forecasts = list(model.predict(test_data.input))
# Plot predictions
df["#Passengers"].plot(color="black")
for forecast, color in zip(forecasts, ["green", "blue", "purple"]):
forecast.plot(color=f"tab:{color}")
plt.legend(["True values"], loc="upper left", fontsize="xx-large")
```
![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png)
Note that the forecasts are displayed in terms of a probability distribution:
The shaded areas represent the 50% and 90% prediction intervals, respectively,
centered around the median.
## Contributing
If you wish to contribute to the project, please refer to our
[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md).
## Citing
If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers,
in addition to any model-specific references that are relevant for your work:
```bibtex
@article{gluonts_jmlr,
author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
Ali Caner Türkmen and Yuyang Wang},
title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {116},
pages = {1-6},
url = {http://jmlr.org/papers/v21/19-820.html}
}
```
```bibtex
@article{gluonts_arxiv,
author = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
Türkmen, A. C. and Wang, Y.},
title = {{GluonTS: Probabilistic Time Series Modeling in Python}},
journal = {arXiv preprint arXiv:1906.05264},
year = {2019}
}
```
## Links
### Documentation
* [Documentation (stable)](https://ts.gluon.ai/stable/)
* [Documentation (development)](https://ts.gluon.ai/dev/)
### References
* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html)
* [ArXiv Paper](https://arxiv.org/abs/1906.05264)
* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography.
### Tutorials and Workshops
* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c).
* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/)
* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/)
* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/)
* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/)
* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8)
* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/)
%package -n python3-gluonts
Summary: Probabilistic time series modeling in Python.
Provides: python-gluonts
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-gluonts
# GluonTS - Probabilistic Time Series Modeling in Python
[](https://pypi.org/project/gluonts/)
[](./LICENSE)
[](https://ts.gluon.ai/)
[](https://ts.gluon.ai/dev/)
[](https://pepy.tech/project/gluonts)
GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models,
based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org).
## Installation
GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`:
```bash
# support for mxnet models, faster datasets
pip install "gluonts[mxnet,pro]"
# support for torch models, faster datasets
pip install "gluonts[torch,pro]"
```
## Simple Example
To illustrate how to use GluonTS, we train a DeepAR-model and make predictions
using the simple "airpassengers" dataset. The dataset consists of a single
time series, containing monthly international passengers between the years
1949 and 1960, a total of 144 values (12 years * 12 months). We split the
dataset into train and test parts, by removing the last three years (36 month)
from the train data. Thus, we will train a model on just the first nine years
of data.
```py
import pandas as pd
import matplotlib.pyplot as plt
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.mx import DeepAREstimator, Trainer
# Load data from a CSV file into a PandasDataset
df = pd.read_csv(
"https://raw.githubusercontent.com/AileenNielsen/"
"TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv",
index_col=0,
parse_dates=True,
)
dataset = PandasDataset(df, target="#Passengers")
# Train a DeepAR model on all data but the last 36 months
training_data, test_gen = split(dataset, offset=-36)
model = DeepAREstimator(
prediction_length=12, freq="M", trainer=Trainer(epochs=5)
).train(training_data)
# Generate test instances and predictions for them
test_data = test_gen.generate_instances(prediction_length=12, windows=3)
forecasts = list(model.predict(test_data.input))
# Plot predictions
df["#Passengers"].plot(color="black")
for forecast, color in zip(forecasts, ["green", "blue", "purple"]):
forecast.plot(color=f"tab:{color}")
plt.legend(["True values"], loc="upper left", fontsize="xx-large")
```
![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png)
Note that the forecasts are displayed in terms of a probability distribution:
The shaded areas represent the 50% and 90% prediction intervals, respectively,
centered around the median.
## Contributing
If you wish to contribute to the project, please refer to our
[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md).
## Citing
If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers,
in addition to any model-specific references that are relevant for your work:
```bibtex
@article{gluonts_jmlr,
author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
Ali Caner Türkmen and Yuyang Wang},
title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {116},
pages = {1-6},
url = {http://jmlr.org/papers/v21/19-820.html}
}
```
```bibtex
@article{gluonts_arxiv,
author = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
Türkmen, A. C. and Wang, Y.},
title = {{GluonTS: Probabilistic Time Series Modeling in Python}},
journal = {arXiv preprint arXiv:1906.05264},
year = {2019}
}
```
## Links
### Documentation
* [Documentation (stable)](https://ts.gluon.ai/stable/)
* [Documentation (development)](https://ts.gluon.ai/dev/)
### References
* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html)
* [ArXiv Paper](https://arxiv.org/abs/1906.05264)
* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography.
### Tutorials and Workshops
* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c).
* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/)
* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/)
* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/)
* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/)
* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8)
* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/)
%package help
Summary: Development documents and examples for gluonts
Provides: python3-gluonts-doc
%description help
# GluonTS - Probabilistic Time Series Modeling in Python
[](https://pypi.org/project/gluonts/)
[](./LICENSE)
[](https://ts.gluon.ai/)
[](https://ts.gluon.ai/dev/)
[](https://pepy.tech/project/gluonts)
GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models,
based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org).
## Installation
GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`:
```bash
# support for mxnet models, faster datasets
pip install "gluonts[mxnet,pro]"
# support for torch models, faster datasets
pip install "gluonts[torch,pro]"
```
## Simple Example
To illustrate how to use GluonTS, we train a DeepAR-model and make predictions
using the simple "airpassengers" dataset. The dataset consists of a single
time series, containing monthly international passengers between the years
1949 and 1960, a total of 144 values (12 years * 12 months). We split the
dataset into train and test parts, by removing the last three years (36 month)
from the train data. Thus, we will train a model on just the first nine years
of data.
```py
import pandas as pd
import matplotlib.pyplot as plt
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.mx import DeepAREstimator, Trainer
# Load data from a CSV file into a PandasDataset
df = pd.read_csv(
"https://raw.githubusercontent.com/AileenNielsen/"
"TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv",
index_col=0,
parse_dates=True,
)
dataset = PandasDataset(df, target="#Passengers")
# Train a DeepAR model on all data but the last 36 months
training_data, test_gen = split(dataset, offset=-36)
model = DeepAREstimator(
prediction_length=12, freq="M", trainer=Trainer(epochs=5)
).train(training_data)
# Generate test instances and predictions for them
test_data = test_gen.generate_instances(prediction_length=12, windows=3)
forecasts = list(model.predict(test_data.input))
# Plot predictions
df["#Passengers"].plot(color="black")
for forecast, color in zip(forecasts, ["green", "blue", "purple"]):
forecast.plot(color=f"tab:{color}")
plt.legend(["True values"], loc="upper left", fontsize="xx-large")
```
![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png)
Note that the forecasts are displayed in terms of a probability distribution:
The shaded areas represent the 50% and 90% prediction intervals, respectively,
centered around the median.
## Contributing
If you wish to contribute to the project, please refer to our
[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md).
## Citing
If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers,
in addition to any model-specific references that are relevant for your work:
```bibtex
@article{gluonts_jmlr,
author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
Ali Caner Türkmen and Yuyang Wang},
title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {116},
pages = {1-6},
url = {http://jmlr.org/papers/v21/19-820.html}
}
```
```bibtex
@article{gluonts_arxiv,
author = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
Türkmen, A. C. and Wang, Y.},
title = {{GluonTS: Probabilistic Time Series Modeling in Python}},
journal = {arXiv preprint arXiv:1906.05264},
year = {2019}
}
```
## Links
### Documentation
* [Documentation (stable)](https://ts.gluon.ai/stable/)
* [Documentation (development)](https://ts.gluon.ai/dev/)
### References
* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html)
* [ArXiv Paper](https://arxiv.org/abs/1906.05264)
* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography.
### Tutorials and Workshops
* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c).
* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/)
* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/)
* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/)
* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/)
* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8)
* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/)
%prep
%autosetup -n gluonts-0.12.7
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-gluonts -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot - 0.12.7-1
- Package Spec generated