%global _empty_manifest_terminate_build 0 Name: python-segmentation-models-pytorch Version: 0.3.2 Release: 1 Summary: Image segmentation models with pre-trained backbones. PyTorch. License: MIT URL: https://github.com/qubvel/segmentation_models.pytorch Source0: https://mirrors.nju.edu.cn/pypi/web/packages/97/68/119271a9693f516cfb1659023fed92a9048904af163243dd7a24a47d5115/segmentation_models_pytorch-0.3.2.tar.gz BuildArch: noarch Requires: python3-torchvision Requires: python3-pretrainedmodels Requires: python3-efficientnet-pytorch Requires: python3-timm Requires: python3-tqdm Requires: python3-pillow Requires: python3-pytest Requires: python3-mock Requires: python3-pre-commit Requires: python3-black Requires: python3-flake8 Requires: python3-flake8-docstrings %description
![logo](https://i.ibb.co/dc1XdhT/Segmentation-Models-V2-Side-1-1.png) **Python library with Neural Networks for Image Segmentation based on [PyTorch](https://pytorch.org/).** [![Generic badge](https://img.shields.io/badge/License-MIT-.svg?style=for-the-badge)](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) [![GitHub Workflow Status (branch)](https://img.shields.io/github/actions/workflow/status/qubvel/segmentation_models.pytorch/tests.yml?branch=master&style=for-the-badge)](https://github.com/qubvel/segmentation_models.pytorch/actions/workflows/tests.yml) [![Read the Docs](https://img.shields.io/readthedocs/smp?style=for-the-badge&logo=readthedocs&logoColor=white)](https://smp.readthedocs.io/en/latest/)
[![PyPI](https://img.shields.io/pypi/v/segmentation-models-pytorch?color=blue&style=for-the-badge&logo=pypi&logoColor=white)](https://pypi.org/project/segmentation-models-pytorch/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/segmentation-models-pytorch?style=for-the-badge&color=blue)](https://pepy.tech/project/segmentation-models-pytorch)
[![PyTorch - Version](https://img.shields.io/badge/PYTORCH-1.4+-red?style=for-the-badge&logo=pytorch)](https://pepy.tech/project/segmentation-models-pytorch) [![Python - Version](https://img.shields.io/badge/PYTHON-3.6+-red?style=for-the-badge&logo=python&logoColor=white)](https://pepy.tech/project/segmentation-models-pytorch)
The main features of this library are: - High level API (just two lines to create a neural network) - 9 models architectures for binary and multi class segmentation (including legendary Unet) - 124 available encoders (and 500+ encoders from [timm](https://github.com/rwightman/pytorch-image-models)) - All encoders have pre-trained weights for faster and better convergence - Popular metrics and losses for training routines ### [📚 Project Documentation 📚](http://smp.readthedocs.io/) Visit [Read The Docs Project Page](https://smp.readthedocs.io/) or read following README to know more about Segmentation Models Pytorch (SMP for short) library ### 📋 Table of content 1. [Quick start](#start) 2. [Examples](#examples) 3. [Models](#models) 1. [Architectures](#architectures) 2. [Encoders](#encoders) 3. [Timm Encoders](#timm) 4. [Models API](#api) 1. [Input channels](#input-channels) 2. [Auxiliary classification output](#auxiliary-classification-output) 3. [Depth](#depth) 5. [Installation](#installation) 6. [Competitions won with the library](#competitions-won-with-the-library) 7. [Contributing](#contributing) 8. [Citing](#citing) 9. [License](#license) ### ⏳ Quick start #### 1. Create your first Segmentation model with SMP Segmentation model is just a PyTorch nn.Module, which can be created as easy as: ```python import segmentation_models_pytorch as smp model = smp.Unet( encoder_name="resnet34", # choose encoder, e.g. mobilenet_v2 or efficientnet-b7 encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization in_channels=1, # model input channels (1 for gray-scale images, 3 for RGB, etc.) classes=3, # model output channels (number of classes in your dataset) ) ``` - see [table](#architectures) with available model architectures - see [table](#encoders) with available encoders and their corresponding weights #### 2. Configure data preprocessing All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give you better results (higher metric score and faster convergence). It is **not necessary** in case you train the whole model, not only decoder. ```python from segmentation_models_pytorch.encoders import get_preprocessing_fn preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet') ``` Congratulations! You are done! Now you can train your model with your favorite framework! ### 💡 Examples - Training model for pets binary segmentation with Pytorch-Lightning [notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) and [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) - Training model for cars segmentation on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb). - Training SMP model with [Catalyst](https://github.com/catalyst-team/catalyst) (high-level framework for PyTorch), [TTAch](https://github.com/qubvel/ttach) (TTA library for PyTorch) and [Albumentations](https://github.com/albu/albumentations) (fast image augmentation library) - [here](https://github.com/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) - Training SMP model with [Pytorch-Lightning](https://pytorch-lightning.readthedocs.io) framework - [here](https://github.com/ternaus/cloths_segmentation) (clothes binary segmentation by [@ternaus](https://github.com/ternaus)). ### 📦 Models #### Architectures - Unet [[paper](https://arxiv.org/abs/1505.04597)] [[docs](https://smp.readthedocs.io/en/latest/models.html#unet)] - Unet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id2)] - MAnet [[paper](https://ieeexplore.ieee.org/abstract/document/9201310)] [[docs](https://smp.readthedocs.io/en/latest/models.html#manet)] - Linknet [[paper](https://arxiv.org/abs/1707.03718)] [[docs](https://smp.readthedocs.io/en/latest/models.html#linknet)] - FPN [[paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#fpn)] - PSPNet [[paper](https://arxiv.org/abs/1612.01105)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pspnet)] - PAN [[paper](https://arxiv.org/abs/1805.10180)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pan)] - DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)] [[docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3)] - DeepLabV3+ [[paper](https://arxiv.org/abs/1802.02611)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id9)] #### Encoders The following is a list of supported encoders in the SMP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (`encoder_name` and `encoder_weights` parameters).
ResNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |resnet18 |imagenet / ssl / swsl |11M | |resnet34 |imagenet |21M | |resnet50 |imagenet / ssl / swsl |23M | |resnet101 |imagenet |42M | |resnet152 |imagenet |58M |
ResNeXt
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |resnext50_32x4d |imagenet / ssl / swsl |22M | |resnext101_32x4d |ssl / swsl |42M | |resnext101_32x8d |imagenet / instagram / ssl / swsl|86M | |resnext101_32x16d |instagram / ssl / swsl |191M | |resnext101_32x32d |instagram |466M | |resnext101_32x48d |instagram |826M |
ResNeSt
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-resnest14d |imagenet |8M | |timm-resnest26d |imagenet |15M | |timm-resnest50d |imagenet |25M | |timm-resnest101e |imagenet |46M | |timm-resnest200e |imagenet |68M | |timm-resnest269e |imagenet |108M | |timm-resnest50d_4s2x40d |imagenet |28M | |timm-resnest50d_1s4x24d |imagenet |23M |
Res2Ne(X)t
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-res2net50_26w_4s |imagenet |23M | |timm-res2net101_26w_4s |imagenet |43M | |timm-res2net50_26w_6s |imagenet |35M | |timm-res2net50_26w_8s |imagenet |46M | |timm-res2net50_48w_2s |imagenet |23M | |timm-res2net50_14w_8s |imagenet |23M | |timm-res2next50 |imagenet |22M |
RegNet(x/y)
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-regnetx_002 |imagenet |2M | |timm-regnetx_004 |imagenet |4M | |timm-regnetx_006 |imagenet |5M | |timm-regnetx_008 |imagenet |6M | |timm-regnetx_016 |imagenet |8M | |timm-regnetx_032 |imagenet |14M | |timm-regnetx_040 |imagenet |20M | |timm-regnetx_064 |imagenet |24M | |timm-regnetx_080 |imagenet |37M | |timm-regnetx_120 |imagenet |43M | |timm-regnetx_160 |imagenet |52M | |timm-regnetx_320 |imagenet |105M | |timm-regnety_002 |imagenet |2M | |timm-regnety_004 |imagenet |3M | |timm-regnety_006 |imagenet |5M | |timm-regnety_008 |imagenet |5M | |timm-regnety_016 |imagenet |10M | |timm-regnety_032 |imagenet |17M | |timm-regnety_040 |imagenet |19M | |timm-regnety_064 |imagenet |29M | |timm-regnety_080 |imagenet |37M | |timm-regnety_120 |imagenet |49M | |timm-regnety_160 |imagenet |80M | |timm-regnety_320 |imagenet |141M |
GERNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-gernet_s |imagenet |6M | |timm-gernet_m |imagenet |18M | |timm-gernet_l |imagenet |28M |
SE-Net
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |senet154 |imagenet |113M | |se_resnet50 |imagenet |26M | |se_resnet101 |imagenet |47M | |se_resnet152 |imagenet |64M | |se_resnext50_32x4d |imagenet |25M | |se_resnext101_32x4d |imagenet |46M |
SK-ResNe(X)t
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-skresnet18 |imagenet |11M | |timm-skresnet34 |imagenet |21M | |timm-skresnext50_32x4d |imagenet |25M |
DenseNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |densenet121 |imagenet |6M | |densenet169 |imagenet |12M | |densenet201 |imagenet |18M | |densenet161 |imagenet |26M |
Inception
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |inceptionresnetv2 |imagenet / imagenet+background |54M | |inceptionv4 |imagenet / imagenet+background |41M | |xception |imagenet |22M |
EfficientNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |efficientnet-b0 |imagenet |4M | |efficientnet-b1 |imagenet |6M | |efficientnet-b2 |imagenet |7M | |efficientnet-b3 |imagenet |10M | |efficientnet-b4 |imagenet |17M | |efficientnet-b5 |imagenet |28M | |efficientnet-b6 |imagenet |40M | |efficientnet-b7 |imagenet |63M | |timm-efficientnet-b0 |imagenet / advprop / noisy-student|4M | |timm-efficientnet-b1 |imagenet / advprop / noisy-student|6M | |timm-efficientnet-b2 |imagenet / advprop / noisy-student|7M | |timm-efficientnet-b3 |imagenet / advprop / noisy-student|10M | |timm-efficientnet-b4 |imagenet / advprop / noisy-student|17M | |timm-efficientnet-b5 |imagenet / advprop / noisy-student|28M | |timm-efficientnet-b6 |imagenet / advprop / noisy-student|40M | |timm-efficientnet-b7 |imagenet / advprop / noisy-student|63M | |timm-efficientnet-b8 |imagenet / advprop |84M | |timm-efficientnet-l2 |noisy-student |474M | |timm-efficientnet-lite0 |imagenet |4M | |timm-efficientnet-lite1 |imagenet |5M | |timm-efficientnet-lite2 |imagenet |6M | |timm-efficientnet-lite3 |imagenet |8M | |timm-efficientnet-lite4 |imagenet |13M |
MobileNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mobilenet_v2 |imagenet |2M | |timm-mobilenetv3_large_075 |imagenet |1.78M | |timm-mobilenetv3_large_100 |imagenet |2.97M | |timm-mobilenetv3_large_minimal_100|imagenet |1.41M | |timm-mobilenetv3_small_075 |imagenet |0.57M | |timm-mobilenetv3_small_100 |imagenet |0.93M | |timm-mobilenetv3_small_minimal_100|imagenet |0.43M |
DPN
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |dpn68 |imagenet |11M | |dpn68b |imagenet+5k |11M | |dpn92 |imagenet+5k |34M | |dpn98 |imagenet |58M | |dpn107 |imagenet+5k |84M | |dpn131 |imagenet |76M |
VGG
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |vgg11 |imagenet |9M | |vgg11_bn |imagenet |9M | |vgg13 |imagenet |9M | |vgg13_bn |imagenet |9M | |vgg16 |imagenet |14M | |vgg16_bn |imagenet |14M | |vgg19 |imagenet |20M | |vgg19_bn |imagenet |20M |
Mix Vision Transformer
Backbone from SegFormer pretrained on Imagenet! Can be used with other decoders from package, you can combine Mix Vision Transformer with Unet, FPN and others! Limitations: - encoder is **not** supported by Linknet, Unet++ - encoder is supported by FPN only for encoder **depth = 5** |Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mit_b0 |imagenet |3M | |mit_b1 |imagenet |13M | |mit_b2 |imagenet |24M | |mit_b3 |imagenet |44M | |mit_b4 |imagenet |60M | |mit_b5 |imagenet |81M |
MobileOne
Apple's "sub-one-ms" Backbone pretrained on Imagenet! Can be used with all decoders. Note: In the official github repo the s0 variant has additional num_conv_branches, leading to more params than s1. |Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mobileone_s0 |imagenet |4.6M | |mobileone_s1 |imagenet |4.0M | |mobileone_s2 |imagenet |6.5M | |mobileone_s3 |imagenet |8.8M | |mobileone_s4 |imagenet |13.6M |
\* `ssl`, `swsl` - semi-supervised and weakly-supervised learning on ImageNet ([repo](https://github.com/facebookresearch/semi-supervised-ImageNet1K-models)). #### Timm Encoders [docs](https://smp.readthedocs.io/en/latest/encoders_timm.html) Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported - not all transformer models have ``features_only`` functionality implemented that is required for encoder - some models have inappropriate strides Total number of supported encoders: 549 - [table with available encoders](https://smp.readthedocs.io/en/latest/encoders_timm.html) ### 🔁 Models API - `model.encoder` - pretrained backbone to extract features of different spatial resolution - `model.decoder` - depends on models architecture (`Unet`/`Linknet`/`PSPNet`/`FPN`) - `model.segmentation_head` - last block to produce required number of mask channels (include also optional upsampling and activation) - `model.classification_head` - optional block which create classification head on top of encoder - `model.forward(x)` - sequentially pass `x` through model\`s encoder, decoder and segmentation head (and classification head if specified) ##### Input channels Input channels parameter allows you to create models, which process tensors with arbitrary number of channels. If you use pretrained weights from imagenet - weights of first convolution will be reused. For 1-channel case it would be a sum of weights of first convolution layer, otherwise channels would be populated with weights like `new_weight[:, i] = pretrained_weight[:, i % 3]` and than scaled with `new_weight * 3 / new_in_channels`. ```python model = smp.FPN('resnet34', in_channels=1) mask = model(torch.ones([1, 1, 64, 64])) ``` ##### Auxiliary classification output All models support `aux_params` parameters, which is default set to `None`. If `aux_params = None` then classification auxiliary output is not created, else model produce not only `mask`, but also `label` output with shape `NC`. Classification head consists of GlobalPooling->Dropout(optional)->Linear->Activation(optional) layers, which can be configured by `aux_params` as follows: ```python aux_params=dict( pooling='avg', # one of 'avg', 'max' dropout=0.5, # dropout ratio, default is None activation='sigmoid', # activation function, default is None classes=4, # define number of output labels ) model = smp.Unet('resnet34', classes=4, aux_params=aux_params) mask, label = model(x) ``` ##### Depth Depth parameter specify a number of downsampling operations in encoder, so you can make your model lighter if specify smaller `depth`. ```python model = smp.Unet('resnet34', encoder_depth=4) ``` ### 🛠 Installation PyPI version: ```bash $ pip install segmentation-models-pytorch ```` Latest version from source: ```bash $ pip install git+https://github.com/qubvel/segmentation_models.pytorch ```` ### 🏆 Competitions won with the library `Segmentation Models` package is widely used in the image segmentation competitions. [Here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/HALLOFFAME.md) you can find competitions, names of the winners and links to their solutions. ### 🤝 Contributing ##### Install linting and formatting pre-commit hooks ```bash pip install pre-commit black==22.3.0 flake8==4.0.1 pre-commit install ``` ##### Run tests ```bash pytest -p no:cacheprovider ``` ##### Run tests in docker ```bash $ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev pytest -p no:cacheprovider ``` ##### Generate table with encoders (in case you add a new encoder) ```bash $ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev python misc/generate_table.py ``` ### 📝 Citing ``` @misc{Iakubovskii:2019, Author = {Pavel Iakubovskii}, Title = {Segmentation Models Pytorch}, Year = {2019}, Publisher = {GitHub}, Journal = {GitHub repository}, Howpublished = {\url{https://github.com/qubvel/segmentation_models.pytorch}} } ``` ### 🛡️ License Project is distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) %package -n python3-segmentation-models-pytorch Summary: Image segmentation models with pre-trained backbones. PyTorch. Provides: python-segmentation-models-pytorch BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-segmentation-models-pytorch
![logo](https://i.ibb.co/dc1XdhT/Segmentation-Models-V2-Side-1-1.png) **Python library with Neural Networks for Image Segmentation based on [PyTorch](https://pytorch.org/).** [![Generic badge](https://img.shields.io/badge/License-MIT-.svg?style=for-the-badge)](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) [![GitHub Workflow Status (branch)](https://img.shields.io/github/actions/workflow/status/qubvel/segmentation_models.pytorch/tests.yml?branch=master&style=for-the-badge)](https://github.com/qubvel/segmentation_models.pytorch/actions/workflows/tests.yml) [![Read the Docs](https://img.shields.io/readthedocs/smp?style=for-the-badge&logo=readthedocs&logoColor=white)](https://smp.readthedocs.io/en/latest/)
[![PyPI](https://img.shields.io/pypi/v/segmentation-models-pytorch?color=blue&style=for-the-badge&logo=pypi&logoColor=white)](https://pypi.org/project/segmentation-models-pytorch/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/segmentation-models-pytorch?style=for-the-badge&color=blue)](https://pepy.tech/project/segmentation-models-pytorch)
[![PyTorch - Version](https://img.shields.io/badge/PYTORCH-1.4+-red?style=for-the-badge&logo=pytorch)](https://pepy.tech/project/segmentation-models-pytorch) [![Python - Version](https://img.shields.io/badge/PYTHON-3.6+-red?style=for-the-badge&logo=python&logoColor=white)](https://pepy.tech/project/segmentation-models-pytorch)
The main features of this library are: - High level API (just two lines to create a neural network) - 9 models architectures for binary and multi class segmentation (including legendary Unet) - 124 available encoders (and 500+ encoders from [timm](https://github.com/rwightman/pytorch-image-models)) - All encoders have pre-trained weights for faster and better convergence - Popular metrics and losses for training routines ### [📚 Project Documentation 📚](http://smp.readthedocs.io/) Visit [Read The Docs Project Page](https://smp.readthedocs.io/) or read following README to know more about Segmentation Models Pytorch (SMP for short) library ### 📋 Table of content 1. [Quick start](#start) 2. [Examples](#examples) 3. [Models](#models) 1. [Architectures](#architectures) 2. [Encoders](#encoders) 3. [Timm Encoders](#timm) 4. [Models API](#api) 1. [Input channels](#input-channels) 2. [Auxiliary classification output](#auxiliary-classification-output) 3. [Depth](#depth) 5. [Installation](#installation) 6. [Competitions won with the library](#competitions-won-with-the-library) 7. [Contributing](#contributing) 8. [Citing](#citing) 9. [License](#license) ### ⏳ Quick start #### 1. Create your first Segmentation model with SMP Segmentation model is just a PyTorch nn.Module, which can be created as easy as: ```python import segmentation_models_pytorch as smp model = smp.Unet( encoder_name="resnet34", # choose encoder, e.g. mobilenet_v2 or efficientnet-b7 encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization in_channels=1, # model input channels (1 for gray-scale images, 3 for RGB, etc.) classes=3, # model output channels (number of classes in your dataset) ) ``` - see [table](#architectures) with available model architectures - see [table](#encoders) with available encoders and their corresponding weights #### 2. Configure data preprocessing All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give you better results (higher metric score and faster convergence). It is **not necessary** in case you train the whole model, not only decoder. ```python from segmentation_models_pytorch.encoders import get_preprocessing_fn preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet') ``` Congratulations! You are done! Now you can train your model with your favorite framework! ### 💡 Examples - Training model for pets binary segmentation with Pytorch-Lightning [notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) and [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) - Training model for cars segmentation on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb). - Training SMP model with [Catalyst](https://github.com/catalyst-team/catalyst) (high-level framework for PyTorch), [TTAch](https://github.com/qubvel/ttach) (TTA library for PyTorch) and [Albumentations](https://github.com/albu/albumentations) (fast image augmentation library) - [here](https://github.com/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) - Training SMP model with [Pytorch-Lightning](https://pytorch-lightning.readthedocs.io) framework - [here](https://github.com/ternaus/cloths_segmentation) (clothes binary segmentation by [@ternaus](https://github.com/ternaus)). ### 📦 Models #### Architectures - Unet [[paper](https://arxiv.org/abs/1505.04597)] [[docs](https://smp.readthedocs.io/en/latest/models.html#unet)] - Unet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id2)] - MAnet [[paper](https://ieeexplore.ieee.org/abstract/document/9201310)] [[docs](https://smp.readthedocs.io/en/latest/models.html#manet)] - Linknet [[paper](https://arxiv.org/abs/1707.03718)] [[docs](https://smp.readthedocs.io/en/latest/models.html#linknet)] - FPN [[paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#fpn)] - PSPNet [[paper](https://arxiv.org/abs/1612.01105)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pspnet)] - PAN [[paper](https://arxiv.org/abs/1805.10180)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pan)] - DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)] [[docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3)] - DeepLabV3+ [[paper](https://arxiv.org/abs/1802.02611)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id9)] #### Encoders The following is a list of supported encoders in the SMP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (`encoder_name` and `encoder_weights` parameters).
ResNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |resnet18 |imagenet / ssl / swsl |11M | |resnet34 |imagenet |21M | |resnet50 |imagenet / ssl / swsl |23M | |resnet101 |imagenet |42M | |resnet152 |imagenet |58M |
ResNeXt
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |resnext50_32x4d |imagenet / ssl / swsl |22M | |resnext101_32x4d |ssl / swsl |42M | |resnext101_32x8d |imagenet / instagram / ssl / swsl|86M | |resnext101_32x16d |instagram / ssl / swsl |191M | |resnext101_32x32d |instagram |466M | |resnext101_32x48d |instagram |826M |
ResNeSt
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-resnest14d |imagenet |8M | |timm-resnest26d |imagenet |15M | |timm-resnest50d |imagenet |25M | |timm-resnest101e |imagenet |46M | |timm-resnest200e |imagenet |68M | |timm-resnest269e |imagenet |108M | |timm-resnest50d_4s2x40d |imagenet |28M | |timm-resnest50d_1s4x24d |imagenet |23M |
Res2Ne(X)t
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-res2net50_26w_4s |imagenet |23M | |timm-res2net101_26w_4s |imagenet |43M | |timm-res2net50_26w_6s |imagenet |35M | |timm-res2net50_26w_8s |imagenet |46M | |timm-res2net50_48w_2s |imagenet |23M | |timm-res2net50_14w_8s |imagenet |23M | |timm-res2next50 |imagenet |22M |
RegNet(x/y)
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-regnetx_002 |imagenet |2M | |timm-regnetx_004 |imagenet |4M | |timm-regnetx_006 |imagenet |5M | |timm-regnetx_008 |imagenet |6M | |timm-regnetx_016 |imagenet |8M | |timm-regnetx_032 |imagenet |14M | |timm-regnetx_040 |imagenet |20M | |timm-regnetx_064 |imagenet |24M | |timm-regnetx_080 |imagenet |37M | |timm-regnetx_120 |imagenet |43M | |timm-regnetx_160 |imagenet |52M | |timm-regnetx_320 |imagenet |105M | |timm-regnety_002 |imagenet |2M | |timm-regnety_004 |imagenet |3M | |timm-regnety_006 |imagenet |5M | |timm-regnety_008 |imagenet |5M | |timm-regnety_016 |imagenet |10M | |timm-regnety_032 |imagenet |17M | |timm-regnety_040 |imagenet |19M | |timm-regnety_064 |imagenet |29M | |timm-regnety_080 |imagenet |37M | |timm-regnety_120 |imagenet |49M | |timm-regnety_160 |imagenet |80M | |timm-regnety_320 |imagenet |141M |
GERNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-gernet_s |imagenet |6M | |timm-gernet_m |imagenet |18M | |timm-gernet_l |imagenet |28M |
SE-Net
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |senet154 |imagenet |113M | |se_resnet50 |imagenet |26M | |se_resnet101 |imagenet |47M | |se_resnet152 |imagenet |64M | |se_resnext50_32x4d |imagenet |25M | |se_resnext101_32x4d |imagenet |46M |
SK-ResNe(X)t
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-skresnet18 |imagenet |11M | |timm-skresnet34 |imagenet |21M | |timm-skresnext50_32x4d |imagenet |25M |
DenseNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |densenet121 |imagenet |6M | |densenet169 |imagenet |12M | |densenet201 |imagenet |18M | |densenet161 |imagenet |26M |
Inception
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |inceptionresnetv2 |imagenet / imagenet+background |54M | |inceptionv4 |imagenet / imagenet+background |41M | |xception |imagenet |22M |
EfficientNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |efficientnet-b0 |imagenet |4M | |efficientnet-b1 |imagenet |6M | |efficientnet-b2 |imagenet |7M | |efficientnet-b3 |imagenet |10M | |efficientnet-b4 |imagenet |17M | |efficientnet-b5 |imagenet |28M | |efficientnet-b6 |imagenet |40M | |efficientnet-b7 |imagenet |63M | |timm-efficientnet-b0 |imagenet / advprop / noisy-student|4M | |timm-efficientnet-b1 |imagenet / advprop / noisy-student|6M | |timm-efficientnet-b2 |imagenet / advprop / noisy-student|7M | |timm-efficientnet-b3 |imagenet / advprop / noisy-student|10M | |timm-efficientnet-b4 |imagenet / advprop / noisy-student|17M | |timm-efficientnet-b5 |imagenet / advprop / noisy-student|28M | |timm-efficientnet-b6 |imagenet / advprop / noisy-student|40M | |timm-efficientnet-b7 |imagenet / advprop / noisy-student|63M | |timm-efficientnet-b8 |imagenet / advprop |84M | |timm-efficientnet-l2 |noisy-student |474M | |timm-efficientnet-lite0 |imagenet |4M | |timm-efficientnet-lite1 |imagenet |5M | |timm-efficientnet-lite2 |imagenet |6M | |timm-efficientnet-lite3 |imagenet |8M | |timm-efficientnet-lite4 |imagenet |13M |
MobileNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mobilenet_v2 |imagenet |2M | |timm-mobilenetv3_large_075 |imagenet |1.78M | |timm-mobilenetv3_large_100 |imagenet |2.97M | |timm-mobilenetv3_large_minimal_100|imagenet |1.41M | |timm-mobilenetv3_small_075 |imagenet |0.57M | |timm-mobilenetv3_small_100 |imagenet |0.93M | |timm-mobilenetv3_small_minimal_100|imagenet |0.43M |
DPN
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |dpn68 |imagenet |11M | |dpn68b |imagenet+5k |11M | |dpn92 |imagenet+5k |34M | |dpn98 |imagenet |58M | |dpn107 |imagenet+5k |84M | |dpn131 |imagenet |76M |
VGG
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |vgg11 |imagenet |9M | |vgg11_bn |imagenet |9M | |vgg13 |imagenet |9M | |vgg13_bn |imagenet |9M | |vgg16 |imagenet |14M | |vgg16_bn |imagenet |14M | |vgg19 |imagenet |20M | |vgg19_bn |imagenet |20M |
Mix Vision Transformer
Backbone from SegFormer pretrained on Imagenet! Can be used with other decoders from package, you can combine Mix Vision Transformer with Unet, FPN and others! Limitations: - encoder is **not** supported by Linknet, Unet++ - encoder is supported by FPN only for encoder **depth = 5** |Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mit_b0 |imagenet |3M | |mit_b1 |imagenet |13M | |mit_b2 |imagenet |24M | |mit_b3 |imagenet |44M | |mit_b4 |imagenet |60M | |mit_b5 |imagenet |81M |
MobileOne
Apple's "sub-one-ms" Backbone pretrained on Imagenet! Can be used with all decoders. Note: In the official github repo the s0 variant has additional num_conv_branches, leading to more params than s1. |Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mobileone_s0 |imagenet |4.6M | |mobileone_s1 |imagenet |4.0M | |mobileone_s2 |imagenet |6.5M | |mobileone_s3 |imagenet |8.8M | |mobileone_s4 |imagenet |13.6M |
\* `ssl`, `swsl` - semi-supervised and weakly-supervised learning on ImageNet ([repo](https://github.com/facebookresearch/semi-supervised-ImageNet1K-models)). #### Timm Encoders [docs](https://smp.readthedocs.io/en/latest/encoders_timm.html) Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported - not all transformer models have ``features_only`` functionality implemented that is required for encoder - some models have inappropriate strides Total number of supported encoders: 549 - [table with available encoders](https://smp.readthedocs.io/en/latest/encoders_timm.html) ### 🔁 Models API - `model.encoder` - pretrained backbone to extract features of different spatial resolution - `model.decoder` - depends on models architecture (`Unet`/`Linknet`/`PSPNet`/`FPN`) - `model.segmentation_head` - last block to produce required number of mask channels (include also optional upsampling and activation) - `model.classification_head` - optional block which create classification head on top of encoder - `model.forward(x)` - sequentially pass `x` through model\`s encoder, decoder and segmentation head (and classification head if specified) ##### Input channels Input channels parameter allows you to create models, which process tensors with arbitrary number of channels. If you use pretrained weights from imagenet - weights of first convolution will be reused. For 1-channel case it would be a sum of weights of first convolution layer, otherwise channels would be populated with weights like `new_weight[:, i] = pretrained_weight[:, i % 3]` and than scaled with `new_weight * 3 / new_in_channels`. ```python model = smp.FPN('resnet34', in_channels=1) mask = model(torch.ones([1, 1, 64, 64])) ``` ##### Auxiliary classification output All models support `aux_params` parameters, which is default set to `None`. If `aux_params = None` then classification auxiliary output is not created, else model produce not only `mask`, but also `label` output with shape `NC`. Classification head consists of GlobalPooling->Dropout(optional)->Linear->Activation(optional) layers, which can be configured by `aux_params` as follows: ```python aux_params=dict( pooling='avg', # one of 'avg', 'max' dropout=0.5, # dropout ratio, default is None activation='sigmoid', # activation function, default is None classes=4, # define number of output labels ) model = smp.Unet('resnet34', classes=4, aux_params=aux_params) mask, label = model(x) ``` ##### Depth Depth parameter specify a number of downsampling operations in encoder, so you can make your model lighter if specify smaller `depth`. ```python model = smp.Unet('resnet34', encoder_depth=4) ``` ### 🛠 Installation PyPI version: ```bash $ pip install segmentation-models-pytorch ```` Latest version from source: ```bash $ pip install git+https://github.com/qubvel/segmentation_models.pytorch ```` ### 🏆 Competitions won with the library `Segmentation Models` package is widely used in the image segmentation competitions. [Here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/HALLOFFAME.md) you can find competitions, names of the winners and links to their solutions. ### 🤝 Contributing ##### Install linting and formatting pre-commit hooks ```bash pip install pre-commit black==22.3.0 flake8==4.0.1 pre-commit install ``` ##### Run tests ```bash pytest -p no:cacheprovider ``` ##### Run tests in docker ```bash $ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev pytest -p no:cacheprovider ``` ##### Generate table with encoders (in case you add a new encoder) ```bash $ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev python misc/generate_table.py ``` ### 📝 Citing ``` @misc{Iakubovskii:2019, Author = {Pavel Iakubovskii}, Title = {Segmentation Models Pytorch}, Year = {2019}, Publisher = {GitHub}, Journal = {GitHub repository}, Howpublished = {\url{https://github.com/qubvel/segmentation_models.pytorch}} } ``` ### 🛡️ License Project is distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) %package help Summary: Development documents and examples for segmentation-models-pytorch Provides: python3-segmentation-models-pytorch-doc %description help
![logo](https://i.ibb.co/dc1XdhT/Segmentation-Models-V2-Side-1-1.png) **Python library with Neural Networks for Image Segmentation based on [PyTorch](https://pytorch.org/).** [![Generic badge](https://img.shields.io/badge/License-MIT-.svg?style=for-the-badge)](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) [![GitHub Workflow Status (branch)](https://img.shields.io/github/actions/workflow/status/qubvel/segmentation_models.pytorch/tests.yml?branch=master&style=for-the-badge)](https://github.com/qubvel/segmentation_models.pytorch/actions/workflows/tests.yml) [![Read the Docs](https://img.shields.io/readthedocs/smp?style=for-the-badge&logo=readthedocs&logoColor=white)](https://smp.readthedocs.io/en/latest/)
[![PyPI](https://img.shields.io/pypi/v/segmentation-models-pytorch?color=blue&style=for-the-badge&logo=pypi&logoColor=white)](https://pypi.org/project/segmentation-models-pytorch/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/segmentation-models-pytorch?style=for-the-badge&color=blue)](https://pepy.tech/project/segmentation-models-pytorch)
[![PyTorch - Version](https://img.shields.io/badge/PYTORCH-1.4+-red?style=for-the-badge&logo=pytorch)](https://pepy.tech/project/segmentation-models-pytorch) [![Python - Version](https://img.shields.io/badge/PYTHON-3.6+-red?style=for-the-badge&logo=python&logoColor=white)](https://pepy.tech/project/segmentation-models-pytorch)
The main features of this library are: - High level API (just two lines to create a neural network) - 9 models architectures for binary and multi class segmentation (including legendary Unet) - 124 available encoders (and 500+ encoders from [timm](https://github.com/rwightman/pytorch-image-models)) - All encoders have pre-trained weights for faster and better convergence - Popular metrics and losses for training routines ### [📚 Project Documentation 📚](http://smp.readthedocs.io/) Visit [Read The Docs Project Page](https://smp.readthedocs.io/) or read following README to know more about Segmentation Models Pytorch (SMP for short) library ### 📋 Table of content 1. [Quick start](#start) 2. [Examples](#examples) 3. [Models](#models) 1. [Architectures](#architectures) 2. [Encoders](#encoders) 3. [Timm Encoders](#timm) 4. [Models API](#api) 1. [Input channels](#input-channels) 2. [Auxiliary classification output](#auxiliary-classification-output) 3. [Depth](#depth) 5. [Installation](#installation) 6. [Competitions won with the library](#competitions-won-with-the-library) 7. [Contributing](#contributing) 8. [Citing](#citing) 9. [License](#license) ### ⏳ Quick start #### 1. Create your first Segmentation model with SMP Segmentation model is just a PyTorch nn.Module, which can be created as easy as: ```python import segmentation_models_pytorch as smp model = smp.Unet( encoder_name="resnet34", # choose encoder, e.g. mobilenet_v2 or efficientnet-b7 encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization in_channels=1, # model input channels (1 for gray-scale images, 3 for RGB, etc.) classes=3, # model output channels (number of classes in your dataset) ) ``` - see [table](#architectures) with available model architectures - see [table](#encoders) with available encoders and their corresponding weights #### 2. Configure data preprocessing All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give you better results (higher metric score and faster convergence). It is **not necessary** in case you train the whole model, not only decoder. ```python from segmentation_models_pytorch.encoders import get_preprocessing_fn preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet') ``` Congratulations! You are done! Now you can train your model with your favorite framework! ### 💡 Examples - Training model for pets binary segmentation with Pytorch-Lightning [notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) and [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/master/examples/binary_segmentation_intro.ipynb) - Training model for cars segmentation on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb). - Training SMP model with [Catalyst](https://github.com/catalyst-team/catalyst) (high-level framework for PyTorch), [TTAch](https://github.com/qubvel/ttach) (TTA library for PyTorch) and [Albumentations](https://github.com/albu/albumentations) (fast image augmentation library) - [here](https://github.com/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) - Training SMP model with [Pytorch-Lightning](https://pytorch-lightning.readthedocs.io) framework - [here](https://github.com/ternaus/cloths_segmentation) (clothes binary segmentation by [@ternaus](https://github.com/ternaus)). ### 📦 Models #### Architectures - Unet [[paper](https://arxiv.org/abs/1505.04597)] [[docs](https://smp.readthedocs.io/en/latest/models.html#unet)] - Unet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id2)] - MAnet [[paper](https://ieeexplore.ieee.org/abstract/document/9201310)] [[docs](https://smp.readthedocs.io/en/latest/models.html#manet)] - Linknet [[paper](https://arxiv.org/abs/1707.03718)] [[docs](https://smp.readthedocs.io/en/latest/models.html#linknet)] - FPN [[paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#fpn)] - PSPNet [[paper](https://arxiv.org/abs/1612.01105)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pspnet)] - PAN [[paper](https://arxiv.org/abs/1805.10180)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pan)] - DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)] [[docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3)] - DeepLabV3+ [[paper](https://arxiv.org/abs/1802.02611)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id9)] #### Encoders The following is a list of supported encoders in the SMP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (`encoder_name` and `encoder_weights` parameters).
ResNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |resnet18 |imagenet / ssl / swsl |11M | |resnet34 |imagenet |21M | |resnet50 |imagenet / ssl / swsl |23M | |resnet101 |imagenet |42M | |resnet152 |imagenet |58M |
ResNeXt
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |resnext50_32x4d |imagenet / ssl / swsl |22M | |resnext101_32x4d |ssl / swsl |42M | |resnext101_32x8d |imagenet / instagram / ssl / swsl|86M | |resnext101_32x16d |instagram / ssl / swsl |191M | |resnext101_32x32d |instagram |466M | |resnext101_32x48d |instagram |826M |
ResNeSt
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-resnest14d |imagenet |8M | |timm-resnest26d |imagenet |15M | |timm-resnest50d |imagenet |25M | |timm-resnest101e |imagenet |46M | |timm-resnest200e |imagenet |68M | |timm-resnest269e |imagenet |108M | |timm-resnest50d_4s2x40d |imagenet |28M | |timm-resnest50d_1s4x24d |imagenet |23M |
Res2Ne(X)t
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-res2net50_26w_4s |imagenet |23M | |timm-res2net101_26w_4s |imagenet |43M | |timm-res2net50_26w_6s |imagenet |35M | |timm-res2net50_26w_8s |imagenet |46M | |timm-res2net50_48w_2s |imagenet |23M | |timm-res2net50_14w_8s |imagenet |23M | |timm-res2next50 |imagenet |22M |
RegNet(x/y)
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-regnetx_002 |imagenet |2M | |timm-regnetx_004 |imagenet |4M | |timm-regnetx_006 |imagenet |5M | |timm-regnetx_008 |imagenet |6M | |timm-regnetx_016 |imagenet |8M | |timm-regnetx_032 |imagenet |14M | |timm-regnetx_040 |imagenet |20M | |timm-regnetx_064 |imagenet |24M | |timm-regnetx_080 |imagenet |37M | |timm-regnetx_120 |imagenet |43M | |timm-regnetx_160 |imagenet |52M | |timm-regnetx_320 |imagenet |105M | |timm-regnety_002 |imagenet |2M | |timm-regnety_004 |imagenet |3M | |timm-regnety_006 |imagenet |5M | |timm-regnety_008 |imagenet |5M | |timm-regnety_016 |imagenet |10M | |timm-regnety_032 |imagenet |17M | |timm-regnety_040 |imagenet |19M | |timm-regnety_064 |imagenet |29M | |timm-regnety_080 |imagenet |37M | |timm-regnety_120 |imagenet |49M | |timm-regnety_160 |imagenet |80M | |timm-regnety_320 |imagenet |141M |
GERNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-gernet_s |imagenet |6M | |timm-gernet_m |imagenet |18M | |timm-gernet_l |imagenet |28M |
SE-Net
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |senet154 |imagenet |113M | |se_resnet50 |imagenet |26M | |se_resnet101 |imagenet |47M | |se_resnet152 |imagenet |64M | |se_resnext50_32x4d |imagenet |25M | |se_resnext101_32x4d |imagenet |46M |
SK-ResNe(X)t
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |timm-skresnet18 |imagenet |11M | |timm-skresnet34 |imagenet |21M | |timm-skresnext50_32x4d |imagenet |25M |
DenseNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |densenet121 |imagenet |6M | |densenet169 |imagenet |12M | |densenet201 |imagenet |18M | |densenet161 |imagenet |26M |
Inception
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |inceptionresnetv2 |imagenet / imagenet+background |54M | |inceptionv4 |imagenet / imagenet+background |41M | |xception |imagenet |22M |
EfficientNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |efficientnet-b0 |imagenet |4M | |efficientnet-b1 |imagenet |6M | |efficientnet-b2 |imagenet |7M | |efficientnet-b3 |imagenet |10M | |efficientnet-b4 |imagenet |17M | |efficientnet-b5 |imagenet |28M | |efficientnet-b6 |imagenet |40M | |efficientnet-b7 |imagenet |63M | |timm-efficientnet-b0 |imagenet / advprop / noisy-student|4M | |timm-efficientnet-b1 |imagenet / advprop / noisy-student|6M | |timm-efficientnet-b2 |imagenet / advprop / noisy-student|7M | |timm-efficientnet-b3 |imagenet / advprop / noisy-student|10M | |timm-efficientnet-b4 |imagenet / advprop / noisy-student|17M | |timm-efficientnet-b5 |imagenet / advprop / noisy-student|28M | |timm-efficientnet-b6 |imagenet / advprop / noisy-student|40M | |timm-efficientnet-b7 |imagenet / advprop / noisy-student|63M | |timm-efficientnet-b8 |imagenet / advprop |84M | |timm-efficientnet-l2 |noisy-student |474M | |timm-efficientnet-lite0 |imagenet |4M | |timm-efficientnet-lite1 |imagenet |5M | |timm-efficientnet-lite2 |imagenet |6M | |timm-efficientnet-lite3 |imagenet |8M | |timm-efficientnet-lite4 |imagenet |13M |
MobileNet
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mobilenet_v2 |imagenet |2M | |timm-mobilenetv3_large_075 |imagenet |1.78M | |timm-mobilenetv3_large_100 |imagenet |2.97M | |timm-mobilenetv3_large_minimal_100|imagenet |1.41M | |timm-mobilenetv3_small_075 |imagenet |0.57M | |timm-mobilenetv3_small_100 |imagenet |0.93M | |timm-mobilenetv3_small_minimal_100|imagenet |0.43M |
DPN
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |dpn68 |imagenet |11M | |dpn68b |imagenet+5k |11M | |dpn92 |imagenet+5k |34M | |dpn98 |imagenet |58M | |dpn107 |imagenet+5k |84M | |dpn131 |imagenet |76M |
VGG
|Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |vgg11 |imagenet |9M | |vgg11_bn |imagenet |9M | |vgg13 |imagenet |9M | |vgg13_bn |imagenet |9M | |vgg16 |imagenet |14M | |vgg16_bn |imagenet |14M | |vgg19 |imagenet |20M | |vgg19_bn |imagenet |20M |
Mix Vision Transformer
Backbone from SegFormer pretrained on Imagenet! Can be used with other decoders from package, you can combine Mix Vision Transformer with Unet, FPN and others! Limitations: - encoder is **not** supported by Linknet, Unet++ - encoder is supported by FPN only for encoder **depth = 5** |Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mit_b0 |imagenet |3M | |mit_b1 |imagenet |13M | |mit_b2 |imagenet |24M | |mit_b3 |imagenet |44M | |mit_b4 |imagenet |60M | |mit_b5 |imagenet |81M |
MobileOne
Apple's "sub-one-ms" Backbone pretrained on Imagenet! Can be used with all decoders. Note: In the official github repo the s0 variant has additional num_conv_branches, leading to more params than s1. |Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |mobileone_s0 |imagenet |4.6M | |mobileone_s1 |imagenet |4.0M | |mobileone_s2 |imagenet |6.5M | |mobileone_s3 |imagenet |8.8M | |mobileone_s4 |imagenet |13.6M |
\* `ssl`, `swsl` - semi-supervised and weakly-supervised learning on ImageNet ([repo](https://github.com/facebookresearch/semi-supervised-ImageNet1K-models)). #### Timm Encoders [docs](https://smp.readthedocs.io/en/latest/encoders_timm.html) Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported - not all transformer models have ``features_only`` functionality implemented that is required for encoder - some models have inappropriate strides Total number of supported encoders: 549 - [table with available encoders](https://smp.readthedocs.io/en/latest/encoders_timm.html) ### 🔁 Models API - `model.encoder` - pretrained backbone to extract features of different spatial resolution - `model.decoder` - depends on models architecture (`Unet`/`Linknet`/`PSPNet`/`FPN`) - `model.segmentation_head` - last block to produce required number of mask channels (include also optional upsampling and activation) - `model.classification_head` - optional block which create classification head on top of encoder - `model.forward(x)` - sequentially pass `x` through model\`s encoder, decoder and segmentation head (and classification head if specified) ##### Input channels Input channels parameter allows you to create models, which process tensors with arbitrary number of channels. If you use pretrained weights from imagenet - weights of first convolution will be reused. For 1-channel case it would be a sum of weights of first convolution layer, otherwise channels would be populated with weights like `new_weight[:, i] = pretrained_weight[:, i % 3]` and than scaled with `new_weight * 3 / new_in_channels`. ```python model = smp.FPN('resnet34', in_channels=1) mask = model(torch.ones([1, 1, 64, 64])) ``` ##### Auxiliary classification output All models support `aux_params` parameters, which is default set to `None`. If `aux_params = None` then classification auxiliary output is not created, else model produce not only `mask`, but also `label` output with shape `NC`. Classification head consists of GlobalPooling->Dropout(optional)->Linear->Activation(optional) layers, which can be configured by `aux_params` as follows: ```python aux_params=dict( pooling='avg', # one of 'avg', 'max' dropout=0.5, # dropout ratio, default is None activation='sigmoid', # activation function, default is None classes=4, # define number of output labels ) model = smp.Unet('resnet34', classes=4, aux_params=aux_params) mask, label = model(x) ``` ##### Depth Depth parameter specify a number of downsampling operations in encoder, so you can make your model lighter if specify smaller `depth`. ```python model = smp.Unet('resnet34', encoder_depth=4) ``` ### 🛠 Installation PyPI version: ```bash $ pip install segmentation-models-pytorch ```` Latest version from source: ```bash $ pip install git+https://github.com/qubvel/segmentation_models.pytorch ```` ### 🏆 Competitions won with the library `Segmentation Models` package is widely used in the image segmentation competitions. [Here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/HALLOFFAME.md) you can find competitions, names of the winners and links to their solutions. ### 🤝 Contributing ##### Install linting and formatting pre-commit hooks ```bash pip install pre-commit black==22.3.0 flake8==4.0.1 pre-commit install ``` ##### Run tests ```bash pytest -p no:cacheprovider ``` ##### Run tests in docker ```bash $ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev pytest -p no:cacheprovider ``` ##### Generate table with encoders (in case you add a new encoder) ```bash $ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev python misc/generate_table.py ``` ### 📝 Citing ``` @misc{Iakubovskii:2019, Author = {Pavel Iakubovskii}, Title = {Segmentation Models Pytorch}, Year = {2019}, Publisher = {GitHub}, Journal = {GitHub repository}, Howpublished = {\url{https://github.com/qubvel/segmentation_models.pytorch}} } ``` ### 🛡️ License Project is distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) %prep %autosetup -n segmentation-models-pytorch-0.3.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-segmentation-models-pytorch -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Sun Apr 23 2023 Python_Bot - 0.3.2-1 - Package Spec generated