%global _empty_manifest_terminate_build 0 Name: python-ktrain Version: 0.36.0 Release: 1 Summary: ktrain is a wrapper for TensorFlow Keras that makes deep learning and AI more accessible and easier to apply License: Apache License 2.0 URL: https://github.com/amaiya/ktrain Source0: https://mirrors.nju.edu.cn/pypi/web/packages/18/26/cf5705c8649557779a978eae92edda57c6ae064636772fe2b15fd22e95b7/ktrain-0.36.0.tar.gz BuildArch: noarch %description ### Overview **ktrain** is a lightweight wrapper for the deep learning library [TensorFlow Keras](https://www.tensorflow.org/guide/keras/overview) (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like *fastai* and *ludwig*, **ktrain** is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, **ktrain** allows you to easily and quickly: - employ fast, accurate, and easy-to-use pre-canned models for `text`, `vision`, `graph`, and `tabular` data: - `text` data: - **Text Classification**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), [NBSVM](https://www.aclweb.org/anthology/P12-2018), [fastText](https://arxiv.org/abs/1607.01759), and other models [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)] - **Text Regression**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), Embedding-based linear text regression, [fastText](https://arxiv.org/abs/1607.01759), and other models [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_regression_example.ipynb)] - **Sequence Labeling (NER)**: Bidirectional LSTM with optional [CRF layer](https://arxiv.org/abs/1603.01360) and various embedding schemes such as pretrained [BERT](https://huggingface.co/transformers/pretrained_models.html) and [fasttext](https://fasttext.cc/docs/en/crawl-vectors.html) word embeddings and character embeddings [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb)] - **Ready-to-Use NER models for English, Chinese, and Russian** with no training required [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/shallownlp-examples.ipynb)] - **Sentence Pair Classification** for tasks like paraphrase detection [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/MRPC-BERT.ipynb)] - **Unsupervised Topic Modeling** with [LDA](http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-topic_modeling.ipynb)] - **Document Similarity with One-Class Learning**: given some documents of interest, find and score new documents that are thematically similar to them using [One-Class Text Classification](https://en.wikipedia.org/wiki/One-class_classification) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-document_similarity_scorer.ipynb)] - **Document Recommendation Engines and Semantic Searches**: given a text snippet from a sample document, recommend documents that are semantically-related from a larger corpus [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-recommendation_engine.ipynb)] - **Text Summarization**: summarize long documents - no training required [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization.ipynb)] - **End-to-End Question-Answering**: ask a large text corpus questions and receive exact answers [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)] - **Easy-to-Use Built-In Search Engine**: perform keyword searches on large collections of documents [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)] - **Zero-Shot Learning**: classify documents into user-provided topics **without** training examples [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb)] - **Language Translation**: translate text from one language to another [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb)] - **Text Extraction**: Extract text from PDFs, Word documents, etc. [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_extraction_example.ipynb)] - **Speech Transcription**: Extract text from audio files [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb)] - **Universal Information Extraction**: extract any kind of information from documents by simply phrasing it in the form of a question [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb)] - **Keyphrase Extraction**: extract keywords from documents [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb)] - **Sentiment Analysis**: easy-to-use wrapper to pretrained sentiment analysis [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/sentiment_analysis_example.ipynb)][[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/generative_ai_example.ipynb)] - `vision` data: - **image classification** (e.g., [ResNet](https://arxiv.org/abs/1512.03385), [Wide ResNet](https://arxiv.org/abs/1605.07146), [Inception](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf)) [[example notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)] - **image regression** for predicting numerical targets from photos (e.g., age prediction) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/vision/utk_faces_age_prediction-resnet50.ipynb)] - **image captioning** with a pretrained model [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb)] - **object detection** with a pretrained model [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb)] - `graph` data: - **node classification** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/pubmed_node_classification-GraphSAGE.ipynb)] - **link prediction** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/cora_link_prediction-GraphSAGE.ipynb)] - `tabular` data: - **tabular classification** (e.g., Titanic survival prediction) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)] - **tabular regression** (e.g., predicting house prices) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/tabular/HousePricePrediction-MLP.ipynb)] - **causal inference** using meta-learners [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/tabular/causal_inference_example.ipynb)] - estimate an optimal learning rate for your model given your data using a Learning Rate Finder - utilize learning rate schedules such as the [triangular policy](https://arxiv.org/abs/1506.01186), the [1cycle policy](https://arxiv.org/abs/1803.09820), and [SGDR](https://arxiv.org/abs/1608.03983) to effectively minimize loss and improve generalization - build text classifiers for any language (e.g., [Arabic Sentiment Analysis with BERT](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ArabicHotelReviews-AraBERT.ipynb), [Chinese Sentiment Analysis with NBSVM](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ChineseHotelReviews-nbsvm.ipynb)) - easily train NER models for any language (e.g., [Dutch NER](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb) ) - load and preprocess text and image data from a variety of formats - inspect data points that were misclassified and [provide explanations](https://eli5.readthedocs.io/en/latest/) to help improve your model - leverage a simple prediction API for saving and deploying both models and data-preprocessing steps to make predictions on new raw data - built-in support for exporting models to [ONNX](https://onnx.ai/) and [TensorFlow Lite](https://www.tensorflow.org/lite) (see [example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/ktrain-ONNX-TFLite-examples.ipynb) for more information) ### Tutorials Please see the following tutorial notebooks for a guide on how to use **ktrain** on your projects: * Tutorial 1: [Introduction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb) * Tutorial 2: [Tuning Learning Rates](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-02-tuning-learning-rates.ipynb) * Tutorial 3: [Image Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-03-image-classification.ipynb) * Tutorial 4: [Text Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-04-text-classification.ipynb) * Tutorial 5: [Learning from Unlabeled Text Data](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb) * Tutorial 6: [Text Sequence Tagging](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-06-sequence-tagging.ipynb) for Named Entity Recognition * Tutorial 7: [Graph Node Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-07-graph-node_classification.ipynb) with Graph Neural Networks * Tutorial 8: [Tabular Classification and Regression](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb) * Tutorial A1: [Additional tricks](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A1-additional-tricks.ipynb), which covers topics such as previewing data augmentation schemes, inspecting intermediate output of Keras models for debugging, setting global weight decay, and use of built-in and custom callbacks. * Tutorial A2: [Explaining Predictions and Misclassifications](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A2-explaining-predictions.ipynb) * Tutorial A3: [Text Classification with Hugging Face Transformers](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/tutorials/tutorial-A3-hugging_face_transformers.ipynb) * Tutorial A4: [Using Custom Data Formats and Models: Text Regression with Extra Regressors](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A4-customdata-text_regression_with_extra_regressors.ipynb) Some blog tutorials and other guides about **ktrain** are shown below: > [**ktrain: A Lightweight Wrapper for Keras to Help Train Neural Networks**](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c) > [**BERT Text Classification in 3 Lines of Code**](https://towardsdatascience.com/bert-text-classification-in-3-lines-of-code-using-keras-264db7e7a358) > [**Text Classification with Hugging Face Transformers in TensorFlow 2 (Without Tears)**](https://medium.com/@asmaiya/text-classification-with-hugging-face-transformers-in-tensorflow-2-without-tears-ee50e4f3e7ed) > [**Build an Open-Domain Question-Answering System With BERT in 3 Lines of Code**](https://towardsdatascience.com/build-an-open-domain-question-answering-system-with-bert-in-3-lines-of-code-da0131bc516b) > [**Finetuning BERT using ktrain for Disaster Tweets Classification**](https://medium.com/analytics-vidhya/finetuning-bert-using-ktrain-for-disaster-tweets-classification-18f64a50910b) by Hamiz Ahmed > [**Indonesian NLP Examples with ktrain**](https://github.com/ilos-vigil/ktrain-assessment-study) by Sandy Khosasi ### Examples Using **ktrain** on **Google Colab**? See these Colab examples: - **text classification:** [a simple demo of Multiclass Text Classification with BERT](https://colab.research.google.com/drive/1AH3fkKiEqBpVpO5ua00scp7zcHs5IDLK) - **text classification:** [a simple demo of Multiclass Text Classification with Hugging Face Transformers](https://colab.research.google.com/drive/1YxcceZxsNlvK35pRURgbwvkgejXwFxUt) - **sequence-tagging (NER):** [NER example using `transformer` word embeddings](https://colab.research.google.com/drive/1whrnmM7ElqbaEhXf760eiOMiYk5MNO-Z?usp=sharing) - **question-answering:** [End-to-End Question-Answering](https://colab.research.google.com/drive/1tcsEQ7igx7lw_R0Pfpmsg9Wf3DEXyOvk?usp=sharing) using the 20newsgroups dataset. - **image classification:** [image classification with Cats vs. Dogs](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR) Tasks such as text classification and image classification can be accomplished easily with only a few lines of code. #### Example: Text Classification of [IMDb Movie Reviews](https://ai.stanford.edu/~amaas/data/sentiment/) Using [BERT](https://arxiv.org/pdf/1810.04805.pdf) [[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)] ```python import ktrain from ktrain import text as txt # load data (x_train, y_train), (x_test, y_test), preproc = txt.texts_from_folder('data/aclImdb', maxlen=500, preprocess_mode='bert', train_test_names=['train', 'test'], classes=['pos', 'neg']) # load model model = txt.text_classifier('bert', (x_train, y_train), preproc=preproc) # wrap model and data in ktrain.Learner object learner = ktrain.get_learner(model, train_data=(x_train, y_train), val_data=(x_test, y_test), batch_size=6) # find good learning rate learner.lr_find() # briefly simulate training to find good learning rate learner.lr_plot() # visually identify best learning rate # train using 1cycle learning rate schedule for 3 epochs learner.fit_onecycle(2e-5, 3) ``` #### Example: Classifying Images of [Dogs and Cats](https://www.kaggle.com/c/dogs-vs-cats) Using a Pretrained [ResNet50](https://arxiv.org/abs/1512.03385) model [[see notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)] ```python import ktrain from ktrain import vision as vis # load data (train_data, val_data, preproc) = vis.images_from_folder( datadir='data/dogscats', data_aug = vis.get_data_aug(horizontal_flip=True), train_test_names=['train', 'valid'], target_size=(224,224), color_mode='rgb') # load model model = vis.image_classifier('pretrained_resnet50', train_data, val_data, freeze_layers=80) # wrap model and data in ktrain.Learner object learner = ktrain.get_learner(model=model, train_data=train_data, val_data=val_data, workers=8, use_multiprocessing=False, batch_size=64) # find good learning rate learner.lr_find() # briefly simulate training to find good learning rate learner.lr_plot() # visually identify best learning rate # train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping learner.autofit(1e-4, checkpoint_folder='/tmp/saved_weights') ``` #### Example: Sequence Labeling for [Named Entity Recognition](https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/version/2) using a randomly initialized [Bidirectional LSTM CRF](https://arxiv.org/abs/1603.01360) model [[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/CoNLL2003-BiLSTM_CRF.ipynb)] ```python import ktrain from ktrain import text as txt # load data (trn, val, preproc) = txt.entities_from_txt('data/ner_dataset.csv', sentence_column='Sentence #', word_column='Word', tag_column='Tag', data_format='gmb', use_char=True) # enable character embeddings # load model model = txt.sequence_tagger('bilstm-crf', preproc) # wrap model and data in ktrain.Learner object learner = ktrain.get_learner(model, train_data=trn, val_data=val) # conventional training for 1 epoch using a learning rate of 0.001 (Keras default for Adam optmizer) learner.fit(1e-3, 1) ``` #### Example: Node Classification on [Cora Citation Graph](https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz) using a [GraphSAGE](https://arxiv.org/abs/1706.02216) model [[see notbook](https://github.com/amaiya/ktrain/blob/master/examples/graphs/cora_node_classification-GraphSAGE.ipynb)] ```python import ktrain from ktrain import graph as gr # load data with supervision ratio of 10% (trn, val, preproc) = gr.graph_nodes_from_csv( 'cora.content', # node attributes/labels 'cora.cites', # edge list sample_size=20, holdout_pct=None, holdout_for_inductive=False, train_pct=0.1, sep='\t') # load model model=gr.graph_node_classifier('graphsage', trn) # wrap model and data in ktrain.Learner object learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=64) # find good learning rate learner.lr_find(max_epochs=100) # briefly simulate training to find good learning rate learner.lr_plot() # visually identify best learning rate # train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping learner.autofit(0.01, checkpoint_folder='/tmp/saved_weights') ``` #### Example: Text Classification with [Hugging Face Transformers](https://github.com/huggingface/transformers) on [20 Newsgroups Dataset](https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html) Using [DistilBERT](https://arxiv.org/abs/1910.01108) [[see notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A3-hugging_face_transformers.ipynb)] ```python # load text data categories = ['alt.atheism', 'soc.religion.christian','comp.graphics', 'sci.med'] from sklearn.datasets import fetch_20newsgroups train_b = fetch_20newsgroups(subset='train', categories=categories, shuffle=True) test_b = fetch_20newsgroups(subset='test',categories=categories, shuffle=True) (x_train, y_train) = (train_b.data, train_b.target) (x_test, y_test) = (test_b.data, test_b.target) # build, train, and validate model (Transformer is wrapper around transformers library) import ktrain from ktrain import text MODEL_NAME = 'distilbert-base-uncased' t = text.Transformer(MODEL_NAME, maxlen=500, class_names=train_b.target_names) trn = t.preprocess_train(x_train, y_train) val = t.preprocess_test(x_test, y_test) model = t.get_classifier() learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6) learner.fit_onecycle(5e-5, 4) learner.validate(class_names=t.get_classes()) # class_names must be string values # Output from learner.validate() # precision recall f1-score support # # alt.atheism 0.92 0.93 0.93 319 # comp.graphics 0.97 0.97 0.97 389 # sci.med 0.97 0.95 0.96 396 #soc.religion.christian 0.96 0.96 0.96 398 # # accuracy 0.96 1502 # macro avg 0.95 0.96 0.95 1502 # weighted avg 0.96 0.96 0.96 1502 ``` #### Example: Tabular Classification for [Titanic Survival Prediction](https://www.kaggle.com/c/titanic) Using an MLP [[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/tabular/tabular_classification_and_regression_example.ipynb)] ```python import ktrain from ktrain import tabular import pandas as pd train_df = pd.read_csv('train.csv', index_col=0) train_df = train_df.drop(['Name', 'Ticket', 'Cabin'], 1) trn, val, preproc = tabular.tabular_from_df(train_df, label_columns=['Survived'], random_state=42) learner = ktrain.get_learner(tabular.tabular_classifier('mlp', trn), train_data=trn, val_data=val) learner.lr_find(show_plot=True, max_epochs=5) # estimate learning rate learner.fit_onecycle(5e-3, 10) # evaluate held-out labeled test set tst = preproc.preprocess_test(pd.read_csv('heldout.csv', index_col=0)) learner.evaluate(tst, class_names=preproc.get_classes()) ``` #### Additional examples can be found [here](https://github.com/amaiya/ktrain/tree/master/examples). ### Installation 1. Make sure pip is up-to-date with: `pip install -U pip` 2. [Install TensorFlow 2](https://www.tensorflow.org/install) if it is not already installed (e.g., `pip install tensorflow`) 3. Install *ktrain*: `pip install ktrain` The above should be all you need on Linux systems and cloud computing environments like Google Colab and AWS EC2. If you are using **ktrain** on a **Windows computer**, you can follow these [more detailed instructions](https://github.com/amaiya/ktrain/blob/master/FAQ.md#how-do-i-install-ktrain-on-a-windows-machine) that include some extra steps. **Supported TensorFlow Versions**: *ktrain* should currently support any version of TensorFlow at or above to v2.3: i.e., `pip install tensorflow>=2.3`. However, if using `tensorflow>=2.11`, then you must only use legacy optimizers such as `tf.keras.optimizers.legacy.Adam`. The newer `tf.keras.optimizers.Optimizer` base class is not supported at this time. For instance, when using TensorFlow 2.11 and above, please use `tf.keras.optimzers.legacy.Adam()` instead of the string `"adam"` in `model.compile`. **ktrain** does this automatically when using out-of-the-box models (e.g., models from the `transformers` library). #### Additional Notes About Installation - Some optional, extra libraries used for some operations can be installed as needed. (Notice that **ktrain** is using forked versions of the `eli5` and `stellargraph` libraries in order to support TensorFlow2.) ```python # for graph module: pip install https://github.com/amaiya/stellargraph/archive/refs/heads/no_tf_dep_082.zip # for text.TextPredictor.explain and vision.ImagePredictor.explain: pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip # for tabular.TabularPredictor.explain: pip install shap # for text.zsl (ZeroShotClassifier), text.summarization, text.translation, text.speech: pip install torch # for text.speech: pip install librosa # for tabular.causal_inference_model: pip install causalnlp # for text.summarization.core.LexRankSummarizer: pip install sumy # for text.kw.KeywordExtractor pip install textblob ``` - **ktrain** purposely pins to a lower version of **transformers** to include support for older versions of TensorFlow. If you need a newer version of `transformers`, it is usually safe for you to upgrade `transformers`, as long as you do it **after** installing **ktrain**. - As of v0.30.x, TensorFlow installation is optional and only required if training neural networks. Although **ktrain** uses TensorFlow for neural network training, it also includes a variety of useful pretrained PyTorch models and sklearn models, which can be used out-of-the-box **without** having TensorFlow installed, as summarized in this table: | Feature | TensorFlow | PyTorch | Sklearn | --- | :-: | :-: | :-: | | [training](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c) any neural network (e.g., text or image classification) | ✅ | ❌ | ❌ | | [End-to-End Question-Answering](https://nbviewer.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb) (pretrained) | ✅ | ✅ | ❌ | | [QA-Based Information Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb) (pretrained) | ✅ | ✅ | ❌ | | [Zero-Shot Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Language Translation](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Summarization](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization_with_bart.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Speech Transcription](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Image Captioning](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Object Detection](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Sentiment Analysis](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/sentiment_analysis_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Topic Modeling](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb) (sklearn) | ❌ | ❌ | ✅ | | [Keyphrase Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb) (textblob/nltk/sklearn) | ❌ | ❌ | ✅ | As noted above, end-to-end question-answering and information extraction in **ktrain** can be used with either TensorFlow (using `framework='tf'`) or PyTorch (using `framework='pt'`). ### How to Cite Please cite the [following paper](https://arxiv.org/abs/2004.10703) when using **ktrain**: ``` @article{maiya2020ktrain, title={ktrain: A Low-Code Library for Augmented Machine Learning}, author={Arun S. Maiya}, year={2020}, eprint={2004.10703}, archivePrefix={arXiv}, primaryClass={cs.LG}, journal={arXiv preprint arXiv:2004.10703}, } ``` #### Example: Tabular Classification for [Titanic Survival Prediction](https://www.kaggle.com/c/titanic) Using an MLP [[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/tabular/tabular_classification_and_regression_example.ipynb)] ```python import ktrain from ktrain import tabular import pandas as pd train_df = pd.read_csv('train.csv', index_col=0) train_df = train_df.drop(['Name', 'Ticket', 'Cabin'], 1) trn, val, preproc = tabular.tabular_from_df(train_df, label_columns=['Survived'], random_state=42) learner = ktrain.get_learner(tabular.tabular_classifier('mlp', trn), train_data=trn, val_data=val) learner.lr_find(show_plot=True, max_epochs=5) # estimate learning rate learner.fit_onecycle(5e-3, 10) # evaluate held-out labeled test set tst = preproc.preprocess_test(pd.read_csv('heldout.csv', index_col=0)) learner.evaluate(tst, class_names=preproc.get_classes()) ``` #### Additional examples can be found [here](https://github.com/amaiya/ktrain/tree/master/examples). ### Installation 1. Make sure pip is up-to-date with: `pip install -U pip` 2. [Install TensorFlow 2](https://www.tensorflow.org/install) if it is not already installed (e.g., `pip install tensorflow`) 3. Install *ktrain*: `pip install ktrain` The above should be all you need on Linux systems and cloud computing environments like Google Colab and AWS EC2. If you are using **ktrain** on a **Windows computer**, you can follow these [more detailed instructions](https://github.com/amaiya/ktrain/blob/master/FAQ.md#how-do-i-install-ktrain-on-a-windows-machine) that include some extra steps. **Supported TensorFlow Versions**: *ktrain* should currently support any version of TensorFlow at or above to v2.3: i.e., `pip install tensorflow>=2.3`. However, if using `tensorflow>=2.11`, then you must only use legacy optimizers such as `tf.keras.optimizers.legacy.Adam`. The newer `tf.keras.optimizers.Optimizer` base class is not supported at this time. For instance, when using TensorFlow 2.11 and above, please use `tf.keras.optimzers.legacy.Adam()` instead of the string `"adam"` in `model.compile`. **ktrain** does this automatically when using out-of-the-box models (e.g., models from the `transformers` library). #### Additional Notes About Installation - Some optional, extra libraries used for some operations can be installed as needed. (Notice that **ktrain** is using forked versions of the `eli5` and `stellargraph` libraries in order to support TensorFlow2.) ```python # for graph module: pip install https://github.com/amaiya/stellargraph/archive/refs/heads/no_tf_dep_082.zip # for text.TextPredictor.explain and vision.ImagePredictor.explain: pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip # for tabular.TabularPredictor.explain: pip install shap # for text.zsl (ZeroShotClassifier), text.summarization, text.translation, text.speech: pip install torch # for text.speech: pip install librosa # for tabular.causal_inference_model: pip install causalnlp # for text.summarization.core.LexRankSummarizer: pip install sumy # for text.kw.KeywordExtractor pip install textblob ``` - **ktrain** purposely pins to a lower version of **transformers** to include support for older versions of TensorFlow. If you need a newer version of `transformers`, it is usually safe for you to upgrade `transformers`, as long as you do it **after** installing **ktrain**. - As of v0.30.x, TensorFlow installation is optional and only required if training neural networks. Although **ktrain** uses TensorFlow for neural network training, it also includes a variety of useful pretrained PyTorch models and sklearn models, which can be used out-of-the-box **without** having TensorFlow installed, as summarized in this table: | Feature | TensorFlow | PyTorch | Sklearn | --- | :-: | :-: | :-: | | [training](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c) any neural network (e.g., text or image classification) | ✅ | ❌ | ❌ | | [End-to-End Question-Answering](https://nbviewer.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb) (pretrained) | ✅ | ✅ | ❌ | | [QA-Based Information Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb) (pretrained) | ✅ | ✅ | ❌ | | [Zero-Shot Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Language Translation](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Summarization](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization_with_bart.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Speech Transcription](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Image Captioning](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Object Detection](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Sentiment Analysis](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/sentiment_analysis_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Topic Modeling](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb) (sklearn) | ❌ | ❌ | ✅ | | [Keyphrase Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb) (textblob/nltk/sklearn) | ❌ | ❌ | ✅ | As noted above, end-to-end question-answering and information extraction in **ktrain** can be used with either TensorFlow (using `framework='tf'`) or PyTorch (using `framework='pt'`). ### How to Cite Please cite the [following paper](https://arxiv.org/abs/2004.10703) when using **ktrain**: ``` @article{maiya2020ktrain, title={ktrain: A Low-Code Library for Augmented Machine Learning}, author={Arun S. Maiya}, year={2020}, eprint={2004.10703}, archivePrefix={arXiv}, primaryClass={cs.LG}, journal={arXiv preprint arXiv:2004.10703}, } ``` #### Example: Tabular Classification for [Titanic Survival Prediction](https://www.kaggle.com/c/titanic) Using an MLP [[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/tabular/tabular_classification_and_regression_example.ipynb)] ```python import ktrain from ktrain import tabular import pandas as pd train_df = pd.read_csv('train.csv', index_col=0) train_df = train_df.drop(['Name', 'Ticket', 'Cabin'], 1) trn, val, preproc = tabular.tabular_from_df(train_df, label_columns=['Survived'], random_state=42) learner = ktrain.get_learner(tabular.tabular_classifier('mlp', trn), train_data=trn, val_data=val) learner.lr_find(show_plot=True, max_epochs=5) # estimate learning rate learner.fit_onecycle(5e-3, 10) # evaluate held-out labeled test set tst = preproc.preprocess_test(pd.read_csv('heldout.csv', index_col=0)) learner.evaluate(tst, class_names=preproc.get_classes()) ``` #### Additional examples can be found [here](https://github.com/amaiya/ktrain/tree/master/examples). ### Installation 1. Make sure pip is up-to-date with: `pip install -U pip` 2. [Install TensorFlow 2](https://www.tensorflow.org/install) if it is not already installed (e.g., `pip install tensorflow`) 3. Install *ktrain*: `pip install ktrain` The above should be all you need on Linux systems and cloud computing environments like Google Colab and AWS EC2. If you are using **ktrain** on a **Windows computer**, you can follow these [more detailed instructions](https://github.com/amaiya/ktrain/blob/master/FAQ.md#how-do-i-install-ktrain-on-a-windows-machine) that include some extra steps. **Supported TensorFlow Versions**: *ktrain* should currently support any version of TensorFlow at or above to v2.3: i.e., `pip install tensorflow>=2.3`. However, if using `tensorflow>=2.11`, then you must only use legacy optimizers such as `tf.keras.optimizers.legacy.Adam`. The newer `tf.keras.optimizers.Optimizer` base class is not supported at this time. For instance, when using TensorFlow 2.11 and above, please use `tf.keras.optimzers.legacy.Adam()` instead of the string `"adam"` in `model.compile`. **ktrain** does this automatically when using out-of-the-box models (e.g., models from the `transformers` library). #### Additional Notes About Installation - Some optional, extra libraries used for some operations can be installed as needed. (Notice that **ktrain** is using forked versions of the `eli5` and `stellargraph` libraries in order to support TensorFlow2.) ```python # for graph module: pip install https://github.com/amaiya/stellargraph/archive/refs/heads/no_tf_dep_082.zip # for text.TextPredictor.explain and vision.ImagePredictor.explain: pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip # for tabular.TabularPredictor.explain: pip install shap # for text.zsl (ZeroShotClassifier), text.summarization, text.translation, text.speech: pip install torch # for text.speech: pip install librosa # for tabular.causal_inference_model: pip install causalnlp # for text.summarization.core.LexRankSummarizer: pip install sumy # for text.kw.KeywordExtractor pip install textblob ``` - **ktrain** purposely pins to a lower version of **transformers** to include support for older versions of TensorFlow. If you need a newer version of `transformers`, it is usually safe for you to upgrade `transformers`, as long as you do it **after** installing **ktrain**. - As of v0.30.x, TensorFlow installation is optional and only required if training neural networks. Although **ktrain** uses TensorFlow for neural network training, it also includes a variety of useful pretrained PyTorch models and sklearn models, which can be used out-of-the-box **without** having TensorFlow installed, as summarized in this table: | Feature | TensorFlow | PyTorch | Sklearn | --- | :-: | :-: | :-: | | [training](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c) any neural network (e.g., text or image classification) | ✅ | ❌ | ❌ | | [End-to-End Question-Answering](https://nbviewer.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb) (pretrained) | ✅ | ✅ | ❌ | | [QA-Based Information Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb) (pretrained) | ✅ | ✅ | ❌ | | [Zero-Shot Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Language Translation](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Summarization](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization_with_bart.ipynb) (pretrained) | ❌ | ✅ | ❌ | | [Speech Transcription](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Image Captioning](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Object Detection](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Sentiment Analysis](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/sentiment_analysis_example.ipynb) (pretrained) | ❌ | ✅ |❌ | | [Topic Modeling](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb) (sklearn) | ❌ | ❌ | ✅ | | [Keyphrase Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb) (textblob/nltk/sklearn) | ❌ | ❌ | ✅ | As noted above, end-to-end question-answering and information extraction in **ktrain** can be used with either TensorFlow (using `framework='tf'`) or PyTorch (using `framework='pt'`). ### How to Cite Please cite the [following paper](https://arxiv.org/abs/2004.10703) when using **ktrain**: ``` @article{maiya2020ktrain, title={ktrain: A Low-Code Library for Augmented Machine Learning}, author={Arun S. Maiya}, year={2020}, eprint={2004.10703}, archivePrefix={arXiv}, primaryClass={cs.LG}, journal={arXiv preprint arXiv:2004.10703}, } ```