%global _empty_manifest_terminate_build 0 Name: python-miceforest Version: 5.6.3 Release: 1 Summary: Missing Value Imputation using LightGBM License: MIT URL: https://github.com/AnotherSamWilson/miceforest Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6c/0d/1a43022fa4f4c07b346004dc8f9395e51561907ed6575c6f7c3aa2ba6c1f/miceforest-5.6.3.tar.gz BuildArch: noarch Requires: python3-lightgbm Requires: python3-numpy Requires: python3-blosc Requires: python3-dill Requires: python3-scipy Requires: python3-seaborn Requires: python3-matplotlib Requires: python3-pandas Requires: python3-sklearn %description [![DOI](https://zenodo.org/badge/289387436.svg)](https://zenodo.org/badge/latestdoi/289387436) [![Downloads](https://static.pepy.tech/badge/miceforest)](https://pepy.tech/project/miceforest) [![Pypi](https://img.shields.io/pypi/v/miceforest.svg)](https://pypi.python.org/pypi/miceforest) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/miceforest.svg)](https://anaconda.org/conda-forge/miceforest) [![PyVersions](https://img.shields.io/pypi/pyversions/miceforest.svg?logo=python&logoColor=white)](https://pypi.org/project/miceforest/) [![tests + mypy](https://github.com/AnotherSamWilson/miceforest/actions/workflows/run_tests.yml/badge.svg)](https://github.com/AnotherSamWilson/miceforest/actions/workflows/run_tests.yml) [![Documentation Status](https://readthedocs.org/projects/miceforest/badge/?version=latest)](https://miceforest.readthedocs.io/en/latest/?badge=latest) [![CodeCov](https://codecov.io/gh/AnotherSamWilson/miceforest/branch/master/graphs/badge.svg?branch=master&service=github)](https://codecov.io/gh/AnotherSamWilson/miceforest) ## miceforest: Fast, Memory Efficient Imputation with LightGBM Fast, memory efficient Multiple Imputation by Chained Equations (MICE) with lightgbm. The R version of this package may be found [here](https://github.com/FarrellDay/miceRanger). `miceforest` was designed to be: - **Fast** - Uses lightgbm as a backend - Has efficient mean matching solutions. - Can utilize GPU training - **Flexible** - Can impute pandas dataframes and numpy arrays - Handles categorical data automatically - Fits into a sklearn pipeline - User can customize every aspect of the imputation process - **Production Ready** - Can impute new, unseen datasets quickly - Kernels are efficiently compressed during saving and loading - Data can be imputed in place to save memory - Can build models on non-missing data This document contains a thorough walkthrough of the package, benchmarks, and an introduction to multiple imputation. More information on MICE can be found in Stef van Buuren’s excellent online book, which you can find [here](https://stefvanbuuren.name/fimd/ch-introduction.html). #### Table of Contents: - [Package Meta](https://github.com/AnotherSamWilson/miceforest#Package-Meta) - [The Basics](https://github.com/AnotherSamWilson/miceforest#The-Basics) - [Basic Examples](https://github.com/AnotherSamWilson/miceforest#Basic-Examples) - [Customizing LightGBM Parameters](https://github.com/AnotherSamWilson/miceforest#Customizing-LightGBM-Parameters) - [Available Mean Match Schemes](https://github.com/AnotherSamWilson/miceforest#Controlling-Tree-Growth) - [Imputing New Data with Existing Models](https://github.com/AnotherSamWilson/miceforest#Imputing-New-Data-with-Existing-Models) - [Saving and Loading Kernels](https://github.com/AnotherSamWilson/miceforest#Saving-and-Loading-Kernels) - [Implementing sklearn Pipelines](https://github.com/AnotherSamWilson/miceforest#Implementing-sklearn-Pipelines) - [Advanced Features](https://github.com/AnotherSamWilson/miceforest#Advanced-Features) - [Customizing the Imputation Process](https://github.com/AnotherSamWilson/miceforest#Customizing-the-Imputation-Process) - [Building Models on Nonmissing Data](https://github.com/AnotherSamWilson/miceforest#Building-Models-on-Nonmissing-Data) - [Tuning Parameters](https://github.com/AnotherSamWilson/miceforest#Tuning-Parameters) - [On Reproducibility](https://github.com/AnotherSamWilson/miceforest#On-Reproducibility) - [How to Make the Process Faster](https://github.com/AnotherSamWilson/miceforest#How-to-Make-the-Process-Faster) - [Imputing Data In Place](https://github.com/AnotherSamWilson/miceforest#Imputing-Data-In-Place) - [Diagnostic Plotting](https://github.com/AnotherSamWilson/miceforest#Diagnostic-Plotting) - [Imputed Distributions](https://github.com/AnotherSamWilson/miceforest#Distribution-of-Imputed-Values) - [Correlation Convergence](https://github.com/AnotherSamWilson/miceforest#Convergence-of-Correlation) - [Variable Importance](https://github.com/AnotherSamWilson/miceforest#Variable-Importance) - [Mean Convergence](https://github.com/AnotherSamWilson/miceforest#Variable-Importance) - [Benchmarks](https://github.com/AnotherSamWilson/miceforest#Benchmarks) - [Using the Imputed Data](https://github.com/AnotherSamWilson/miceforest#Using-the-Imputed-Data) - [The MICE Algorithm](https://github.com/AnotherSamWilson/miceforest#The-MICE-Algorithm) - [Introduction](https://github.com/AnotherSamWilson/miceforest#The-MICE-Algorithm) - [Common Use Cases](https://github.com/AnotherSamWilson/miceforest#Common-Use-Cases) - [Predictive Mean Matching](https://github.com/AnotherSamWilson/miceforest#Predictive-Mean-Matching) - [Effects of Mean Matching](https://github.com/AnotherSamWilson/miceforest#Effects-of-Mean-Matching) ## Package Meta ### Installation This package can be installed using either pip or conda, through conda-forge: ``` bash # Using pip $ pip install miceforest --no-cache-dir # Using conda $ conda install -c conda-forge miceforest ``` You can also download the latest development version from this repository. If you want to install from github with conda, you must first run `conda install pip git`. ``` bash $ pip install git+https://github.com/AnotherSamWilson/miceforest.git ``` ### Classes miceforest has 3 main classes which the user will interact with: - [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) - This class contains the raw data off of which the `mice` algorithm is performed. During this process, models will be trained, and the imputed (predicted) values will be stored. These values can be used to fill in the missing values of the raw data. The raw data can be copied, or referenced directly. Models can be saved, and used to impute new datasets. - [`ImputedData`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputedData.html#miceforest.ImputedData) - The result of `ImputationKernel.impute_new_data(new_data)`. This contains the raw data in `new_data` as well as the imputed values. - [`MeanMatchScheme`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.MeanMatchScheme.html#miceforest.MeanMatchScheme) - Determines how mean matching should be carried out. There are 3 built-in mean match schemes available in miceforest, discussed below. ## The Basics We will be looking at a few simple examples of imputation. We need to load the packages, and define the data: ``` python import miceforest as mf from sklearn.datasets import load_iris import pandas as pd import numpy as np # Load data and introduce missing values iris = pd.concat(load_iris(as_frame=True,return_X_y=True),axis=1) iris.rename({"target": "species"}, inplace=True, axis=1) iris['species'] = iris['species'].astype('category') iris_amp = mf.ampute_data(iris,perc=0.25,random_state=1991) ``` ### Basic Examples If you only want to create a single imputed dataset, you can use [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) with some default settings: ``` python # Create kernel. kds = mf.ImputationKernel( iris_amp, save_all_iterations=True, random_state=1991 ) # Run the MICE algorithm for 2 iterations kds.mice(2) # Return the completed dataset. iris_complete = kds.complete_data() ``` There are also an array of plotting functions available, these are discussed below in the section [Diagnostic Plotting](https://github.com/AnotherSamWilson/miceforest#Diagnostic-Plotting). We usually don’t want to impute just a single dataset. In statistics, multiple imputation is a process by which the uncertainty/other effects caused by missing values can be examined by creating multiple different imputed datasets. [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) can contain an arbitrary number of different datasets, all of which have gone through mutually exclusive imputation processes: ``` python # Create kernel. kernel = mf.ImputationKernel( iris_amp, datasets=4, save_all_iterations=True, random_state=1 ) # Run the MICE algorithm for 2 iterations on each of the datasets kernel.mice(2) # Printing the kernel will show you some high level information. print(kernel) ``` ## ## Class: ImputationKernel ## Datasets: 4 ## Iterations: 2 ## Data Samples: 150 ## Data Columns: 5 ## Imputed Variables: 5 ## save_all_iterations: True After we have run mice, we can obtain our completed dataset directly from the kernel: ``` python completed_dataset = kernel.complete_data(dataset=2) print(completed_dataset.isnull().sum(0)) ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 ### Customizing LightGBM Parameters Parameters can be passed directly to lightgbm in several different ways. Parameters you wish to apply globally to every model can simply be passed as kwargs to `mice`: ``` python # Run the MICE algorithm for 1 more iteration on the kernel with new parameters kernel.mice(iterations=1,n_estimators=50) ``` You can also pass pass variable-specific arguments to `variable_parameters` in mice. For instance, let’s say you noticed the imputation of the `[species]` column was taking a little longer, because it is multiclass. You could decrease the n\_estimators specifically for that column with: ``` python # Run the MICE algorithm for 2 more iterations on the kernel kernel.mice( iterations=1, variable_parameters={'species': {'n_estimators': 25}}, n_estimators=50 ) # Let's get the actual models for these variables: species_model = kernel.get_model(dataset=0,variable="species") sepalwidth_model = kernel.get_model(dataset=0,variable="sepal width (cm)") print( f"""Species used {str(species_model.params["num_iterations"])} iterations Sepal Width used {str(sepalwidth_model.params["num_iterations"])} iterations """ ) ``` ## Species used 25 iterations ## Sepal Width used 50 iterations In this scenario, any parameters specified in `variable_parameters` takes presidence over the kwargs. Since we can pass any parameters we want to LightGBM, we can completely customize how our models are built. That includes how the data should be modeled. If your data contains count data, or any other data which can be parameterized by lightgbm, you can simply specify that variable to be modeled with the corresponding objective function. For example, let’s pretend `sepal width (cm)` is a count field which can be parameterized by a Poisson distribution. Let’s also change our boosting method to gradient boosted trees: ``` python # Create kernel. cust_kernel = mf.ImputationKernel( iris_amp, datasets=1, random_state=1 ) cust_kernel.mice( iterations=1, variable_parameters={'sepal width (cm)': {'objective': 'poisson'}}, boosting = 'gbdt', min_sum_hessian_in_leaf=0.01 ) ``` Other nice parameters like `monotone_constraints` can also be passed. Setting the parameter `device: 'gpu'` will utilize GPU learning, if LightGBM is set up to do this on your machine. ### Available Mean Match Schemes Note: It is probably a good idea to read [this section](https://github.com/AnotherSamWilson/miceforest#Predictive-Mean-Matching) first, to get some context on how mean matching works. The class `miceforest.MeanMatchScheme` contains information about how mean matching should be performed, such as: 1) Mean matching functions 2) Mean matching candidates 3) How to get predictions from a lightgbm model 4) The datatypes predictions are stored as There are three pre-built mean matching schemes that come with `miceforest`: ``` python from miceforest import ( mean_match_default, mean_match_fast_cat, mean_match_shap ) # To get information for each, use help() # help(mean_match_default) ``` These schemes mostly differ in their strategy for performing mean matching - **mean\_match\_default** - medium speed, medium imputation quality - Categorical: perform a K Nearest Neighbors search on the candidate class probabilities, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - Numeric: Perform a K Nearest Neighbors search on the candidate predictions, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - **mean\_match\_fast\_cat** - fastest speed, lowest imputation quality - Categorical: return class based on random draw weighted by class probability for each sample. - Numeric: perform a K Nearest Neighbors search on the candidate class probabilities, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - **mean\_match\_shap** - slowest speed, highest imputation quality for large datasets - Categorical: perform a K Nearest Neighbors search on the candidate prediction shap values, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - Numeric: perform a K Nearest Neighbors search on the candidate prediction shap values, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. As a special case, if the mean\_match\_candidates is set to 0, the following behavior is observed for all schemes: - Categorical: the class with the highest probability is chosen. - Numeric: the predicted value is used These mean matching schemes can be updated and customized, we show an example below in the advanced section. ### Imputing New Data with Existing Models Multiple Imputation can take a long time. If you wish to impute a dataset using the MICE algorithm, but don’t have time to train new models, it is possible to impute new datasets using a `ImputationKernel` object. The `impute_new_data()` function uses the models collected by `ImputationKernel` to perform multiple imputation without updating the models at each iteration: ``` python # Our 'new data' is just the first 15 rows of iris_amp from datetime import datetime # Define our new data as the first 15 rows new_data = iris_amp.iloc[range(15)] # Imputing new data can often be made faster by # first compiling candidate predictions kernel.compile_candidate_preds() start_t = datetime.now() new_data_imputed = kernel.impute_new_data(new_data=new_data) print(f"New Data imputed in {(datetime.now() - start_t).total_seconds()} seconds") ``` ## New Data imputed in 0.507115 seconds All of the imputation parameters (variable\_schema, mean\_match\_candidates, etc) will be carried over from the original `ImputationKernel` object. When mean matching, the candidate values are pulled from the original kernel dataset. To impute new data, the `save_models` parameter in `ImputationKernel` must be \> 0. If `save_models == 1`, the model from the latest iteration is saved for each variable. If `save_models > 1`, the model from each iteration is saved. This allows for new data to be imputed in a more similar fashion to the original mice procedure. ### Saving and Loading Kernels Kernels can be saved using the `.save_kernel()` method, and then loaded again using the `utils.load_kernel()` function. Internally, this procedure uses `blosc` and `dill` packages to do the following: 1. Convert working data to parquet bytes (if it is a pandas dataframe) 2. Serialize the kernel 3. Compress this serialization 4. Save to a file ### Implementing sklearn Pipelines kernels can be fit into sklearn pipelines to impute training and scoring datasets: ``` python import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline import miceforest as mf # Define our data X, y = make_classification(random_state=0) # Ampute and split the training data X = mf.utils.ampute_data(X) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Initialize our miceforest kernel. datasets parameter should be 1, # we don't want to return multiple datasets. pipe_kernel = mf.ImputationKernel(X_train, datasets=1) # Define our pipeline pipe = Pipeline([ ('impute', pipe_kernel), ('scaler', StandardScaler()), ]) # Fit on and transform our training data. # Only use 2 iterations of mice. X_train_t = pipe.fit_transform( X_train, y_train, impute__iterations=2 ) # Transform the test data as well X_test_t = pipe.transform(X_test) # Show that neither now have missing values. assert not np.any(np.isnan(X_train_t)) assert not np.any(np.isnan(X_test_t)) ``` ## Advanced Features Multiple imputation is a complex process. However, `miceforest` allows all of the major components to be switched out and customized by the user. ### Customizing the Imputation Process It is possible to heavily customize our imputation procedure by variable. By passing a named list to `variable_schema`, you can specify the predictor variables for each imputed variable. You can also specify `mean_match_candidates` and `data_subset` by variable by passing a dict of valid values, with variable names as keys. You can even replace the entire default mean matching function for certain objectives if desired. Below is an *extremely* convoluted setup, which you would probably never want to use. It simply shows what is possible: ``` python # Use the default mean match schema as our base from miceforest import mean_match_default mean_match_custom = mean_match_default.copy() # Define a mean matching function that # just randomly shuffles the predictions def custom_mmf(bachelor_preds): np.random.shuffle(bachelor_preds) return bachelor_preds # Specify that our custom function should be # used to perform mean matching on any variable # that was modeled with a poisson objective: mean_match_custom.set_mean_match_function( {"poisson": custom_mmf} ) # Set the mean match candidates by variable mean_match_custom.set_mean_match_candidates( { 'sepal width (cm)': 3, 'petal width (cm)': 0 } ) # Define which variables should be used to model others variable_schema = { 'sepal width (cm)': ['species','petal width (cm)'], 'petal width (cm)': ['species','sepal length (cm)'] } # Subset the candidate data to 50 rows for sepal width (cm). variable_subset = { 'sepal width (cm)': 50 } # Specify that petal width (cm) should be modeled by the # poisson objective. Our custom mean matching function # above will be used for this variable. variable_parameters = { 'petal width (cm)': {"objective": "poisson"} } cust_kernel = mf.ImputationKernel( iris_amp, datasets=3, mean_match_scheme=mean_match_custom, variable_schema=variable_schema, data_subset=variable_subset ) cust_kernel.mice(iterations=1, variable_parameters=variable_parameters) ``` The mean matching function can take any number of the following arguments. If a function does not take one of these arguments, then the process will not prepare that data for mean matching. ``` python from miceforest.MeanMatchScheme import AVAILABLE_MEAN_MATCH_ARGS print("\n".join(AVAILABLE_MEAN_MATCH_ARGS)) ``` ## mean_match_candidates ## lgb_booster ## bachelor_preds ## bachelor_features ## candidate_values ## candidate_features ## candidate_preds ## random_state ## hashed_seeds ### Building Models on Nonmissing Data The MICE process itself is used to impute missing data in a dataset. However, sometimes a variable can be fully recognized in the training data, but needs to be imputed later on in a different dataset. It is possible to train models to impute variables even if they have no missing values by setting `train_nonmissing=True`. In this case, `variable_schema` is treated as the list of variables to train models on. `imputation_order` only affects which variables actually have their values imputed, it does not affect which variables have models trained: ``` python orig_missing_cols = ["sepal length (cm)", "sepal width (cm)"] new_missing_cols = ["sepal length (cm)", "sepal width (cm)", "species"] # Training data only contains 2 columns with missing data iris_amp2 = iris.copy() iris_amp2[orig_missing_cols] = mf.ampute_data( iris_amp2[orig_missing_cols], perc=0.25, random_state=1991 ) # Specify that models should also be trained for species column var_sch = new_missing_cols cust_kernel = mf.ImputationKernel( iris_amp2, datasets=1, variable_schema=var_sch, train_nonmissing=True ) cust_kernel.mice(1) # New data has missing values in species column iris_amp2_new = iris.iloc[range(10),:].copy() iris_amp2_new[new_missing_cols] = mf.ampute_data( iris_amp2_new[new_missing_cols], perc=0.25, random_state=1991 ) # Species column can still be imputed iris_amp2_new_imp = cust_kernel.impute_new_data(iris_amp2_new) iris_amp2_new_imp.complete_data(0).isnull().sum() ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 Here, we knew that the species column in our new data would need to be imputed. Therefore, we specified that a model should be built for all 3 variables in the `variable_schema` (passing a dict of target - feature pairs would also have worked). ### Tuning Parameters `miceforest` allows you to tune the parameters on a kernel dataset. These parameters can then be used to build the models in future iterations of mice. In its most simple invocation, you can just call the function with the desired optimization steps: ``` python # Using the first ImputationKernel in kernel to tune parameters # with the default settings. optimal_parameters, losses = kernel.tune_parameters( dataset=0, optimization_steps=5 ) # Run mice with our newly tuned parameters. kernel.mice(1, variable_parameters=optimal_parameters) # The optimal parameters are kept in ImputationKernel.optimal_parameters: print(optimal_parameters) ``` ## {0: {'boosting': 'gbdt', 'num_iterations': 165, 'max_depth': 8, 'num_leaves': 20, 'min_data_in_leaf': 1, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.2498838792503861, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6020460898858531, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 17.807024990062555}, 1: {'boosting': 'gbdt', 'num_iterations': 94, 'max_depth': 8, 'num_leaves': 14, 'min_data_in_leaf': 4, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.7802435334180599, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6856668707631843, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 4.802568893662679}, 2: {'boosting': 'gbdt', 'num_iterations': 229, 'max_depth': 8, 'num_leaves': 4, 'min_data_in_leaf': 8, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.9565982004313843, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6065024947204825, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 17.2138799939537}, 3: {'boosting': 'gbdt', 'num_iterations': 182, 'max_depth': 8, 'num_leaves': 20, 'min_data_in_leaf': 4, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.7251674145835884, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.9262368919526676, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 5.780326477879999}, 4: {'boosting': 'gbdt', 'num_iterations': 208, 'max_depth': 8, 'num_leaves': 4, 'min_data_in_leaf': 7, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.6746301598613926, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.20999114041328495, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'multiclass', 'num_class': 3, 'learning_rate': 0.02, 'cat_smooth': 8.604908973256704}} This will perform 10 fold cross validation on random samples of parameters. By default, all variables models are tuned. If you are curious about the default parameter space that is searched within, check out the `miceforest.default_lightgbm_parameters` module. The parameter tuning is pretty flexible. If you wish to set some model parameters static, or to change the bounds that are searched in, you can simply pass this information to either the `variable_parameters` parameter, `**kwbounds`, or both: ``` python # Using a complicated setup: optimal_parameters, losses = kernel.tune_parameters( dataset=0, variables = ['sepal width (cm)','species','petal width (cm)'], variable_parameters = { 'sepal width (cm)': {'bagging_fraction': 0.5}, 'species': {'bagging_freq': (5,10)} }, optimization_steps=5, extra_trees = [True, False] ) kernel.mice(1, variable_parameters=optimal_parameters) ``` In this example, we did a few things - we specified that only `sepal width (cm)`, `species`, and `petal width (cm)` should be tuned. We also specified some specific parameters in `variable_parameters.` Notice that `bagging_fraction` was passed as a scalar, `0.5`. This means that, for the variable `sepal width (cm)`, the parameter `bagging_fraction` will be set as that number and not be tuned. We did the opposite for `bagging_freq`. We specified bounds that the process should search in. We also passed the argument `extra_trees` as a list. Since it was passed to \*\*kwbounds, this parameter will apply to all variables that are being tuned. Passing values as a list tells the process that it should randomly sample values from the list, instead of treating them as set of counts to search within. The tuning process follows these rules for different parameter values it finds: - Scalar: That value is used, and not tuned. - Tuple: Should be length 2. Treated as the lower and upper bound to search in. - List: Treated as a distinct list of values to try randomly. ### On Reproducibility `miceforest` allows for different “levels” of reproducibility, global and record-level. ##### **Global Reproducibility** Global reproducibility ensures that the same values will be imputed if the same code is run multiple times. To ensure global reproducibility, all the user needs to do is set a `random_state` when the kernel is initialized. ##### **Record-Level Reproducibility** Sometimes we want to obtain reproducible imputations at the record level, without having to pass the same dataset. This is possible by passing a list of record-specific seeds to the `random_seed_array` parameter. This is useful if imputing new data multiple times, and you would like imputations for each row to match each time it is imputed. ``` python # Define seeds for the data, and impute iris random_seed_array = np.random.randint(9999, size=150) iris_imputed = kernel.impute_new_data( iris_amp, random_state=4, random_seed_array=random_seed_array ) # Select a random sample new_inds = np.random.choice(150, size=15) new_data = iris_amp.loc[new_inds] new_seeds = random_seed_array[new_inds] new_imputed = kernel.impute_new_data( new_data, random_state=4, random_seed_array=new_seeds ) # We imputed the same values for the 15 values each time, # because each record was associated with the same seed. assert new_imputed.complete_data(0).equals(iris_imputed.complete_data(0).loc[new_inds]) ``` Note that record-level reproducibility is only possible in the `impute_new_data` function, there are no guarantees of record-level reproducibility in imputations between the kernel and new data. ### How to Make the Process Faster Multiple Imputation is one of the most robust ways to handle missing data - but it can take a long time. There are several strategies you can use to decrease the time a process takes to run: - Decrease `data_subset`. By default all non-missing datapoints for each variable are used to train the model and perform mean matching. This can cause the model training nearest-neighbors search to take a long time for large data. A subset of these points can be searched instead by using `data_subset`. - If categorical columns are taking a long time, you can use the `mean_match_fast_cat` scheme. You can also set different parameters specifically for categorical columns, like smaller `bagging_fraction` or `num_iterations`. - If you need to impute new data faster, compile the predictions with the `compile_candidate_preds` method. This stores the predictions for each model, so it does not need to be re-calculated at each iteration. - Convert your data to a numpy array. Numpy arrays are much faster to index. While indexing overhead is avoided as much as possible, there is no getting around it. Consider comverting to `float32` datatype as well, as it will cause the resulting object to take up much less memory. - Decrease `mean_match_candidates`. The maximum number of neighbors that are considered with the default parameters is 10. However, for large datasets, this can still be an expensive operation. Consider explicitly setting `mean_match_candidates` lower. - Use different lightgbm parameters. lightgbm is usually not the problem, however if a certain variable has a large number of classes, then the max number of trees actually grown is (\# classes) \* (n\_estimators). You can specifically decrease the bagging fraction or n\_estimators for large multi-class variables, or grow less trees in general. - Use a faster mean matching function. The default mean matching function uses the scipy.Spatial.KDtree algorithm. There are faster alternatives out there, if you think mean matching is the holdup. ### Imputing Data In Place It is possible to run the entire process without copying the dataset. If `copy_data=False`, then the data is referenced directly: ``` python kernel_inplace = mf.ImputationKernel( iris_amp, datasets=1, copy_data=False ) kernel_inplace.mice(2) ``` Note, that this probably won’t (but could) change the original dataset in undesirable ways. Throughout the `mice` procedure, imputed values are stored directly in the original data. At the end, the missing values are put back as `np.NaN`. We can also complete our original data in place: ``` python kernel_inplace.complete_data(dataset=0, inplace=True) print(iris_amp.isnull().sum(0)) ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 This is useful if the dataset is large, and copies can’t be made in memory. ## Diagnostic Plotting As of now, miceforest has four diagnostic plots available. ### Distribution of Imputed-Values We probably want to know how the imputed values are distributed. We can plot the original distribution beside the imputed distributions in each dataset by using the `plot_imputed_distributions` method of an `ImputationKernel` object: ``` python kernel.plot_imputed_distributions(wspace=0.3,hspace=0.3) ``` The red line is the original data, and each black line are the imputed values of each dataset. ### Convergence of Correlation We are probably interested in knowing how our values between datasets converged over the iterations. The `plot_correlations` method shows you a boxplot of the correlations between imputed values in every combination of datasets, at each iteration. This allows you to see how correlated the imputations are between datasets, as well as the convergence over iterations: ``` python kernel.plot_correlations() ``` ### Variable Importance We also may be interested in which variables were used to impute each variable. We can plot this information by using the `plot_feature_importance` method. ``` python kernel.plot_feature_importance(dataset=0, annot=True,cmap="YlGnBu",vmin=0, vmax=1) ``` The numbers shown are returned from the `lightgbm.Booster.feature_importance()` function. Each square represents the importance of the column variable in imputing the row variable. ### Mean Convergence If our data is not missing completely at random, we may see that it takes a few iterations for our models to get the distribution of imputations right. We can plot the average value of our imputations to see if this is occurring: ``` python kernel.plot_mean_convergence(wspace=0.3, hspace=0.4) ``` Our data was missing completely at random, so we don’t see any convergence occurring here. ## Using the Imputed Data To return the imputed data simply use the `complete_data` method: ``` python dataset_1 = kernel.complete_data(0) ``` This will return a single specified dataset. Multiple datasets are typically created so that some measure of confidence around each prediction can be created. Since we know what the original data looked like, we can cheat and see how well the imputations compare to the original data: ``` python acclist = [] for iteration in range(kernel.iteration_count()+1): species_na_count = kernel.na_counts[4] compdat = kernel.complete_data(dataset=0,iteration=iteration) # Record the accuract of the imputations of species. acclist.append( round(1-sum(compdat['species'] != iris['species'])/species_na_count,2) ) # acclist shows the accuracy of the imputations # over the iterations. print(acclist) ``` ## [0.35, 0.81, 0.84, 0.84, 0.89, 0.92, 0.89] In this instance, we went from a low accuracy (what is expected with random sampling) to a much higher accuracy. ## The MICE Algorithm Multiple Imputation by Chained Equations ‘fills in’ (imputes) missing data in a dataset through an iterative series of predictive models. In each iteration, each specified variable in the dataset is imputed using the other variables in the dataset. These iterations should be run until it appears that convergence has been met. This process is continued until all specified variables have been imputed. Additional iterations can be run if it appears that the average imputed values have not converged, although no more than 5 iterations are usually necessary. ### Common Use Cases ##### **Data Leakage:** MICE is particularly useful if missing values are associated with the target variable in a way that introduces leakage. For instance, let’s say you wanted to model customer retention at the time of sign up. A certain variable is collected at sign up or 1 month after sign up. The absence of that variable is a data leak, since it tells you that the customer did not retain for 1 month. ##### **Funnel Analysis:** Information is often collected at different stages of a ‘funnel’. MICE can be used to make educated guesses about the characteristics of entities at different points in a funnel. ##### **Confidence Intervals:** MICE can be used to impute missing values, however it is important to keep in mind that these imputed values are a prediction. Creating multiple datasets with different imputed values allows you to do two types of inference: - Imputed Value Distribution: A profile can be built for each imputed value, allowing you to make statements about the likely distribution of that value. - Model Prediction Distribution: With multiple datasets, you can build multiple models and create a distribution of predictions for each sample. Those samples with imputed values which were not able to be imputed with much confidence would have a larger variance in their predictions. ### Predictive Mean Matching `miceforest` can make use of a procedure called predictive mean matching (PMM) to select which values are imputed. PMM involves selecting a datapoint from the original, nonmissing data (candidates) which has a predicted value close to the predicted value of the missing sample (bachelors). The closest N (`mean_match_candidates` parameter) values are selected, from which a value is chosen at random. This can be specified on a column-by-column basis. Going into more detail from our example above, we see how this works in practice: This method is very useful if you have a variable which needs imputing which has any of the following characteristics: - Multimodal - Integer - Skewed ### Effects of Mean Matching As an example, let’s construct a dataset with some of the above characteristics: ``` python randst = np.random.RandomState(1991) # random uniform variable nrws = 1000 uniform_vec = randst.uniform(size=nrws) def make_bimodal(mean1,mean2,size): bimodal_1 = randst.normal(size=nrws, loc=mean1) bimodal_2 = randst.normal(size=nrws, loc=mean2) bimdvec = [] for i in range(size): bimdvec.append(randst.choice([bimodal_1[i], bimodal_2[i]])) return np.array(bimdvec) # Make 2 Bimodal Variables close_bimodal_vec = make_bimodal(2,-2,nrws) far_bimodal_vec = make_bimodal(3,-3,nrws) # Highly skewed variable correlated with Uniform_Variable skewed_vec = np.exp(uniform_vec*randst.uniform(size=nrws)*3) + randst.uniform(size=nrws)*3 # Integer variable correlated with Close_Bimodal_Variable and Uniform_Variable integer_vec = np.round(uniform_vec + close_bimodal_vec/3 + randst.uniform(size=nrws)*2) # Make a DataFrame dat = pd.DataFrame( { 'uniform_var':uniform_vec, 'close_bimodal_var':close_bimodal_vec, 'far_bimodal_var':far_bimodal_vec, 'skewed_var':skewed_vec, 'integer_var':integer_vec } ) # Ampute the data. ampdat = mf.ampute_data(dat,perc=0.25,random_state=randst) # Plot the original data import seaborn as sns import matplotlib.pyplot as plt g = sns.PairGrid(dat) g.map(plt.scatter,s=5) ``` We can see how our variables are distributed and correlated in the graph above. Now let’s run our imputation process twice, once using mean matching, and once using the model prediction. ``` python from miceforest import mean_match_default scheme_mmc_0 = mean_match_default.copy() scheme_mmc_5 = mean_match_default.copy() scheme_mmc_0.set_mean_match_candidates(0) scheme_mmc_5.set_mean_match_candidates(5) kernelmeanmatch = mf.ImputationKernel(ampdat, mean_match_scheme=scheme_mmc_5, datasets=1) kernelmodeloutput = mf.ImputationKernel(ampdat, mean_match_scheme=scheme_mmc_0, datasets=1) kernelmeanmatch.mice(2) kernelmodeloutput.mice(2) ``` Let’s look at the effect on the different variables. ##### With Mean Matching ``` python kernelmeanmatch.plot_imputed_distributions(wspace=0.2,hspace=0.4) ``` ##### Without Mean Matching ``` python kernelmodeloutput.plot_imputed_distributions(wspace=0.2,hspace=0.4) ``` You can see the effects that mean matching has, depending on the distribution of the data. Simply returning the value from the model prediction, while it may provide a better ‘fit’, will not provide imputations with a similair distribution to the original. This may be beneficial, depending on your goal. %package -n python3-miceforest Summary: Missing Value Imputation using LightGBM Provides: python-miceforest BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-miceforest [![DOI](https://zenodo.org/badge/289387436.svg)](https://zenodo.org/badge/latestdoi/289387436) [![Downloads](https://static.pepy.tech/badge/miceforest)](https://pepy.tech/project/miceforest) [![Pypi](https://img.shields.io/pypi/v/miceforest.svg)](https://pypi.python.org/pypi/miceforest) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/miceforest.svg)](https://anaconda.org/conda-forge/miceforest) [![PyVersions](https://img.shields.io/pypi/pyversions/miceforest.svg?logo=python&logoColor=white)](https://pypi.org/project/miceforest/) [![tests + mypy](https://github.com/AnotherSamWilson/miceforest/actions/workflows/run_tests.yml/badge.svg)](https://github.com/AnotherSamWilson/miceforest/actions/workflows/run_tests.yml) [![Documentation Status](https://readthedocs.org/projects/miceforest/badge/?version=latest)](https://miceforest.readthedocs.io/en/latest/?badge=latest) [![CodeCov](https://codecov.io/gh/AnotherSamWilson/miceforest/branch/master/graphs/badge.svg?branch=master&service=github)](https://codecov.io/gh/AnotherSamWilson/miceforest) ## miceforest: Fast, Memory Efficient Imputation with LightGBM Fast, memory efficient Multiple Imputation by Chained Equations (MICE) with lightgbm. The R version of this package may be found [here](https://github.com/FarrellDay/miceRanger). `miceforest` was designed to be: - **Fast** - Uses lightgbm as a backend - Has efficient mean matching solutions. - Can utilize GPU training - **Flexible** - Can impute pandas dataframes and numpy arrays - Handles categorical data automatically - Fits into a sklearn pipeline - User can customize every aspect of the imputation process - **Production Ready** - Can impute new, unseen datasets quickly - Kernels are efficiently compressed during saving and loading - Data can be imputed in place to save memory - Can build models on non-missing data This document contains a thorough walkthrough of the package, benchmarks, and an introduction to multiple imputation. More information on MICE can be found in Stef van Buuren’s excellent online book, which you can find [here](https://stefvanbuuren.name/fimd/ch-introduction.html). #### Table of Contents: - [Package Meta](https://github.com/AnotherSamWilson/miceforest#Package-Meta) - [The Basics](https://github.com/AnotherSamWilson/miceforest#The-Basics) - [Basic Examples](https://github.com/AnotherSamWilson/miceforest#Basic-Examples) - [Customizing LightGBM Parameters](https://github.com/AnotherSamWilson/miceforest#Customizing-LightGBM-Parameters) - [Available Mean Match Schemes](https://github.com/AnotherSamWilson/miceforest#Controlling-Tree-Growth) - [Imputing New Data with Existing Models](https://github.com/AnotherSamWilson/miceforest#Imputing-New-Data-with-Existing-Models) - [Saving and Loading Kernels](https://github.com/AnotherSamWilson/miceforest#Saving-and-Loading-Kernels) - [Implementing sklearn Pipelines](https://github.com/AnotherSamWilson/miceforest#Implementing-sklearn-Pipelines) - [Advanced Features](https://github.com/AnotherSamWilson/miceforest#Advanced-Features) - [Customizing the Imputation Process](https://github.com/AnotherSamWilson/miceforest#Customizing-the-Imputation-Process) - [Building Models on Nonmissing Data](https://github.com/AnotherSamWilson/miceforest#Building-Models-on-Nonmissing-Data) - [Tuning Parameters](https://github.com/AnotherSamWilson/miceforest#Tuning-Parameters) - [On Reproducibility](https://github.com/AnotherSamWilson/miceforest#On-Reproducibility) - [How to Make the Process Faster](https://github.com/AnotherSamWilson/miceforest#How-to-Make-the-Process-Faster) - [Imputing Data In Place](https://github.com/AnotherSamWilson/miceforest#Imputing-Data-In-Place) - [Diagnostic Plotting](https://github.com/AnotherSamWilson/miceforest#Diagnostic-Plotting) - [Imputed Distributions](https://github.com/AnotherSamWilson/miceforest#Distribution-of-Imputed-Values) - [Correlation Convergence](https://github.com/AnotherSamWilson/miceforest#Convergence-of-Correlation) - [Variable Importance](https://github.com/AnotherSamWilson/miceforest#Variable-Importance) - [Mean Convergence](https://github.com/AnotherSamWilson/miceforest#Variable-Importance) - [Benchmarks](https://github.com/AnotherSamWilson/miceforest#Benchmarks) - [Using the Imputed Data](https://github.com/AnotherSamWilson/miceforest#Using-the-Imputed-Data) - [The MICE Algorithm](https://github.com/AnotherSamWilson/miceforest#The-MICE-Algorithm) - [Introduction](https://github.com/AnotherSamWilson/miceforest#The-MICE-Algorithm) - [Common Use Cases](https://github.com/AnotherSamWilson/miceforest#Common-Use-Cases) - [Predictive Mean Matching](https://github.com/AnotherSamWilson/miceforest#Predictive-Mean-Matching) - [Effects of Mean Matching](https://github.com/AnotherSamWilson/miceforest#Effects-of-Mean-Matching) ## Package Meta ### Installation This package can be installed using either pip or conda, through conda-forge: ``` bash # Using pip $ pip install miceforest --no-cache-dir # Using conda $ conda install -c conda-forge miceforest ``` You can also download the latest development version from this repository. If you want to install from github with conda, you must first run `conda install pip git`. ``` bash $ pip install git+https://github.com/AnotherSamWilson/miceforest.git ``` ### Classes miceforest has 3 main classes which the user will interact with: - [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) - This class contains the raw data off of which the `mice` algorithm is performed. During this process, models will be trained, and the imputed (predicted) values will be stored. These values can be used to fill in the missing values of the raw data. The raw data can be copied, or referenced directly. Models can be saved, and used to impute new datasets. - [`ImputedData`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputedData.html#miceforest.ImputedData) - The result of `ImputationKernel.impute_new_data(new_data)`. This contains the raw data in `new_data` as well as the imputed values. - [`MeanMatchScheme`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.MeanMatchScheme.html#miceforest.MeanMatchScheme) - Determines how mean matching should be carried out. There are 3 built-in mean match schemes available in miceforest, discussed below. ## The Basics We will be looking at a few simple examples of imputation. We need to load the packages, and define the data: ``` python import miceforest as mf from sklearn.datasets import load_iris import pandas as pd import numpy as np # Load data and introduce missing values iris = pd.concat(load_iris(as_frame=True,return_X_y=True),axis=1) iris.rename({"target": "species"}, inplace=True, axis=1) iris['species'] = iris['species'].astype('category') iris_amp = mf.ampute_data(iris,perc=0.25,random_state=1991) ``` ### Basic Examples If you only want to create a single imputed dataset, you can use [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) with some default settings: ``` python # Create kernel. kds = mf.ImputationKernel( iris_amp, save_all_iterations=True, random_state=1991 ) # Run the MICE algorithm for 2 iterations kds.mice(2) # Return the completed dataset. iris_complete = kds.complete_data() ``` There are also an array of plotting functions available, these are discussed below in the section [Diagnostic Plotting](https://github.com/AnotherSamWilson/miceforest#Diagnostic-Plotting). We usually don’t want to impute just a single dataset. In statistics, multiple imputation is a process by which the uncertainty/other effects caused by missing values can be examined by creating multiple different imputed datasets. [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) can contain an arbitrary number of different datasets, all of which have gone through mutually exclusive imputation processes: ``` python # Create kernel. kernel = mf.ImputationKernel( iris_amp, datasets=4, save_all_iterations=True, random_state=1 ) # Run the MICE algorithm for 2 iterations on each of the datasets kernel.mice(2) # Printing the kernel will show you some high level information. print(kernel) ``` ## ## Class: ImputationKernel ## Datasets: 4 ## Iterations: 2 ## Data Samples: 150 ## Data Columns: 5 ## Imputed Variables: 5 ## save_all_iterations: True After we have run mice, we can obtain our completed dataset directly from the kernel: ``` python completed_dataset = kernel.complete_data(dataset=2) print(completed_dataset.isnull().sum(0)) ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 ### Customizing LightGBM Parameters Parameters can be passed directly to lightgbm in several different ways. Parameters you wish to apply globally to every model can simply be passed as kwargs to `mice`: ``` python # Run the MICE algorithm for 1 more iteration on the kernel with new parameters kernel.mice(iterations=1,n_estimators=50) ``` You can also pass pass variable-specific arguments to `variable_parameters` in mice. For instance, let’s say you noticed the imputation of the `[species]` column was taking a little longer, because it is multiclass. You could decrease the n\_estimators specifically for that column with: ``` python # Run the MICE algorithm for 2 more iterations on the kernel kernel.mice( iterations=1, variable_parameters={'species': {'n_estimators': 25}}, n_estimators=50 ) # Let's get the actual models for these variables: species_model = kernel.get_model(dataset=0,variable="species") sepalwidth_model = kernel.get_model(dataset=0,variable="sepal width (cm)") print( f"""Species used {str(species_model.params["num_iterations"])} iterations Sepal Width used {str(sepalwidth_model.params["num_iterations"])} iterations """ ) ``` ## Species used 25 iterations ## Sepal Width used 50 iterations In this scenario, any parameters specified in `variable_parameters` takes presidence over the kwargs. Since we can pass any parameters we want to LightGBM, we can completely customize how our models are built. That includes how the data should be modeled. If your data contains count data, or any other data which can be parameterized by lightgbm, you can simply specify that variable to be modeled with the corresponding objective function. For example, let’s pretend `sepal width (cm)` is a count field which can be parameterized by a Poisson distribution. Let’s also change our boosting method to gradient boosted trees: ``` python # Create kernel. cust_kernel = mf.ImputationKernel( iris_amp, datasets=1, random_state=1 ) cust_kernel.mice( iterations=1, variable_parameters={'sepal width (cm)': {'objective': 'poisson'}}, boosting = 'gbdt', min_sum_hessian_in_leaf=0.01 ) ``` Other nice parameters like `monotone_constraints` can also be passed. Setting the parameter `device: 'gpu'` will utilize GPU learning, if LightGBM is set up to do this on your machine. ### Available Mean Match Schemes Note: It is probably a good idea to read [this section](https://github.com/AnotherSamWilson/miceforest#Predictive-Mean-Matching) first, to get some context on how mean matching works. The class `miceforest.MeanMatchScheme` contains information about how mean matching should be performed, such as: 1) Mean matching functions 2) Mean matching candidates 3) How to get predictions from a lightgbm model 4) The datatypes predictions are stored as There are three pre-built mean matching schemes that come with `miceforest`: ``` python from miceforest import ( mean_match_default, mean_match_fast_cat, mean_match_shap ) # To get information for each, use help() # help(mean_match_default) ``` These schemes mostly differ in their strategy for performing mean matching - **mean\_match\_default** - medium speed, medium imputation quality - Categorical: perform a K Nearest Neighbors search on the candidate class probabilities, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - Numeric: Perform a K Nearest Neighbors search on the candidate predictions, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - **mean\_match\_fast\_cat** - fastest speed, lowest imputation quality - Categorical: return class based on random draw weighted by class probability for each sample. - Numeric: perform a K Nearest Neighbors search on the candidate class probabilities, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - **mean\_match\_shap** - slowest speed, highest imputation quality for large datasets - Categorical: perform a K Nearest Neighbors search on the candidate prediction shap values, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - Numeric: perform a K Nearest Neighbors search on the candidate prediction shap values, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. As a special case, if the mean\_match\_candidates is set to 0, the following behavior is observed for all schemes: - Categorical: the class with the highest probability is chosen. - Numeric: the predicted value is used These mean matching schemes can be updated and customized, we show an example below in the advanced section. ### Imputing New Data with Existing Models Multiple Imputation can take a long time. If you wish to impute a dataset using the MICE algorithm, but don’t have time to train new models, it is possible to impute new datasets using a `ImputationKernel` object. The `impute_new_data()` function uses the models collected by `ImputationKernel` to perform multiple imputation without updating the models at each iteration: ``` python # Our 'new data' is just the first 15 rows of iris_amp from datetime import datetime # Define our new data as the first 15 rows new_data = iris_amp.iloc[range(15)] # Imputing new data can often be made faster by # first compiling candidate predictions kernel.compile_candidate_preds() start_t = datetime.now() new_data_imputed = kernel.impute_new_data(new_data=new_data) print(f"New Data imputed in {(datetime.now() - start_t).total_seconds()} seconds") ``` ## New Data imputed in 0.507115 seconds All of the imputation parameters (variable\_schema, mean\_match\_candidates, etc) will be carried over from the original `ImputationKernel` object. When mean matching, the candidate values are pulled from the original kernel dataset. To impute new data, the `save_models` parameter in `ImputationKernel` must be \> 0. If `save_models == 1`, the model from the latest iteration is saved for each variable. If `save_models > 1`, the model from each iteration is saved. This allows for new data to be imputed in a more similar fashion to the original mice procedure. ### Saving and Loading Kernels Kernels can be saved using the `.save_kernel()` method, and then loaded again using the `utils.load_kernel()` function. Internally, this procedure uses `blosc` and `dill` packages to do the following: 1. Convert working data to parquet bytes (if it is a pandas dataframe) 2. Serialize the kernel 3. Compress this serialization 4. Save to a file ### Implementing sklearn Pipelines kernels can be fit into sklearn pipelines to impute training and scoring datasets: ``` python import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline import miceforest as mf # Define our data X, y = make_classification(random_state=0) # Ampute and split the training data X = mf.utils.ampute_data(X) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Initialize our miceforest kernel. datasets parameter should be 1, # we don't want to return multiple datasets. pipe_kernel = mf.ImputationKernel(X_train, datasets=1) # Define our pipeline pipe = Pipeline([ ('impute', pipe_kernel), ('scaler', StandardScaler()), ]) # Fit on and transform our training data. # Only use 2 iterations of mice. X_train_t = pipe.fit_transform( X_train, y_train, impute__iterations=2 ) # Transform the test data as well X_test_t = pipe.transform(X_test) # Show that neither now have missing values. assert not np.any(np.isnan(X_train_t)) assert not np.any(np.isnan(X_test_t)) ``` ## Advanced Features Multiple imputation is a complex process. However, `miceforest` allows all of the major components to be switched out and customized by the user. ### Customizing the Imputation Process It is possible to heavily customize our imputation procedure by variable. By passing a named list to `variable_schema`, you can specify the predictor variables for each imputed variable. You can also specify `mean_match_candidates` and `data_subset` by variable by passing a dict of valid values, with variable names as keys. You can even replace the entire default mean matching function for certain objectives if desired. Below is an *extremely* convoluted setup, which you would probably never want to use. It simply shows what is possible: ``` python # Use the default mean match schema as our base from miceforest import mean_match_default mean_match_custom = mean_match_default.copy() # Define a mean matching function that # just randomly shuffles the predictions def custom_mmf(bachelor_preds): np.random.shuffle(bachelor_preds) return bachelor_preds # Specify that our custom function should be # used to perform mean matching on any variable # that was modeled with a poisson objective: mean_match_custom.set_mean_match_function( {"poisson": custom_mmf} ) # Set the mean match candidates by variable mean_match_custom.set_mean_match_candidates( { 'sepal width (cm)': 3, 'petal width (cm)': 0 } ) # Define which variables should be used to model others variable_schema = { 'sepal width (cm)': ['species','petal width (cm)'], 'petal width (cm)': ['species','sepal length (cm)'] } # Subset the candidate data to 50 rows for sepal width (cm). variable_subset = { 'sepal width (cm)': 50 } # Specify that petal width (cm) should be modeled by the # poisson objective. Our custom mean matching function # above will be used for this variable. variable_parameters = { 'petal width (cm)': {"objective": "poisson"} } cust_kernel = mf.ImputationKernel( iris_amp, datasets=3, mean_match_scheme=mean_match_custom, variable_schema=variable_schema, data_subset=variable_subset ) cust_kernel.mice(iterations=1, variable_parameters=variable_parameters) ``` The mean matching function can take any number of the following arguments. If a function does not take one of these arguments, then the process will not prepare that data for mean matching. ``` python from miceforest.MeanMatchScheme import AVAILABLE_MEAN_MATCH_ARGS print("\n".join(AVAILABLE_MEAN_MATCH_ARGS)) ``` ## mean_match_candidates ## lgb_booster ## bachelor_preds ## bachelor_features ## candidate_values ## candidate_features ## candidate_preds ## random_state ## hashed_seeds ### Building Models on Nonmissing Data The MICE process itself is used to impute missing data in a dataset. However, sometimes a variable can be fully recognized in the training data, but needs to be imputed later on in a different dataset. It is possible to train models to impute variables even if they have no missing values by setting `train_nonmissing=True`. In this case, `variable_schema` is treated as the list of variables to train models on. `imputation_order` only affects which variables actually have their values imputed, it does not affect which variables have models trained: ``` python orig_missing_cols = ["sepal length (cm)", "sepal width (cm)"] new_missing_cols = ["sepal length (cm)", "sepal width (cm)", "species"] # Training data only contains 2 columns with missing data iris_amp2 = iris.copy() iris_amp2[orig_missing_cols] = mf.ampute_data( iris_amp2[orig_missing_cols], perc=0.25, random_state=1991 ) # Specify that models should also be trained for species column var_sch = new_missing_cols cust_kernel = mf.ImputationKernel( iris_amp2, datasets=1, variable_schema=var_sch, train_nonmissing=True ) cust_kernel.mice(1) # New data has missing values in species column iris_amp2_new = iris.iloc[range(10),:].copy() iris_amp2_new[new_missing_cols] = mf.ampute_data( iris_amp2_new[new_missing_cols], perc=0.25, random_state=1991 ) # Species column can still be imputed iris_amp2_new_imp = cust_kernel.impute_new_data(iris_amp2_new) iris_amp2_new_imp.complete_data(0).isnull().sum() ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 Here, we knew that the species column in our new data would need to be imputed. Therefore, we specified that a model should be built for all 3 variables in the `variable_schema` (passing a dict of target - feature pairs would also have worked). ### Tuning Parameters `miceforest` allows you to tune the parameters on a kernel dataset. These parameters can then be used to build the models in future iterations of mice. In its most simple invocation, you can just call the function with the desired optimization steps: ``` python # Using the first ImputationKernel in kernel to tune parameters # with the default settings. optimal_parameters, losses = kernel.tune_parameters( dataset=0, optimization_steps=5 ) # Run mice with our newly tuned parameters. kernel.mice(1, variable_parameters=optimal_parameters) # The optimal parameters are kept in ImputationKernel.optimal_parameters: print(optimal_parameters) ``` ## {0: {'boosting': 'gbdt', 'num_iterations': 165, 'max_depth': 8, 'num_leaves': 20, 'min_data_in_leaf': 1, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.2498838792503861, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6020460898858531, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 17.807024990062555}, 1: {'boosting': 'gbdt', 'num_iterations': 94, 'max_depth': 8, 'num_leaves': 14, 'min_data_in_leaf': 4, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.7802435334180599, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6856668707631843, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 4.802568893662679}, 2: {'boosting': 'gbdt', 'num_iterations': 229, 'max_depth': 8, 'num_leaves': 4, 'min_data_in_leaf': 8, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.9565982004313843, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6065024947204825, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 17.2138799939537}, 3: {'boosting': 'gbdt', 'num_iterations': 182, 'max_depth': 8, 'num_leaves': 20, 'min_data_in_leaf': 4, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.7251674145835884, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.9262368919526676, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 5.780326477879999}, 4: {'boosting': 'gbdt', 'num_iterations': 208, 'max_depth': 8, 'num_leaves': 4, 'min_data_in_leaf': 7, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.6746301598613926, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.20999114041328495, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'multiclass', 'num_class': 3, 'learning_rate': 0.02, 'cat_smooth': 8.604908973256704}} This will perform 10 fold cross validation on random samples of parameters. By default, all variables models are tuned. If you are curious about the default parameter space that is searched within, check out the `miceforest.default_lightgbm_parameters` module. The parameter tuning is pretty flexible. If you wish to set some model parameters static, or to change the bounds that are searched in, you can simply pass this information to either the `variable_parameters` parameter, `**kwbounds`, or both: ``` python # Using a complicated setup: optimal_parameters, losses = kernel.tune_parameters( dataset=0, variables = ['sepal width (cm)','species','petal width (cm)'], variable_parameters = { 'sepal width (cm)': {'bagging_fraction': 0.5}, 'species': {'bagging_freq': (5,10)} }, optimization_steps=5, extra_trees = [True, False] ) kernel.mice(1, variable_parameters=optimal_parameters) ``` In this example, we did a few things - we specified that only `sepal width (cm)`, `species`, and `petal width (cm)` should be tuned. We also specified some specific parameters in `variable_parameters.` Notice that `bagging_fraction` was passed as a scalar, `0.5`. This means that, for the variable `sepal width (cm)`, the parameter `bagging_fraction` will be set as that number and not be tuned. We did the opposite for `bagging_freq`. We specified bounds that the process should search in. We also passed the argument `extra_trees` as a list. Since it was passed to \*\*kwbounds, this parameter will apply to all variables that are being tuned. Passing values as a list tells the process that it should randomly sample values from the list, instead of treating them as set of counts to search within. The tuning process follows these rules for different parameter values it finds: - Scalar: That value is used, and not tuned. - Tuple: Should be length 2. Treated as the lower and upper bound to search in. - List: Treated as a distinct list of values to try randomly. ### On Reproducibility `miceforest` allows for different “levels” of reproducibility, global and record-level. ##### **Global Reproducibility** Global reproducibility ensures that the same values will be imputed if the same code is run multiple times. To ensure global reproducibility, all the user needs to do is set a `random_state` when the kernel is initialized. ##### **Record-Level Reproducibility** Sometimes we want to obtain reproducible imputations at the record level, without having to pass the same dataset. This is possible by passing a list of record-specific seeds to the `random_seed_array` parameter. This is useful if imputing new data multiple times, and you would like imputations for each row to match each time it is imputed. ``` python # Define seeds for the data, and impute iris random_seed_array = np.random.randint(9999, size=150) iris_imputed = kernel.impute_new_data( iris_amp, random_state=4, random_seed_array=random_seed_array ) # Select a random sample new_inds = np.random.choice(150, size=15) new_data = iris_amp.loc[new_inds] new_seeds = random_seed_array[new_inds] new_imputed = kernel.impute_new_data( new_data, random_state=4, random_seed_array=new_seeds ) # We imputed the same values for the 15 values each time, # because each record was associated with the same seed. assert new_imputed.complete_data(0).equals(iris_imputed.complete_data(0).loc[new_inds]) ``` Note that record-level reproducibility is only possible in the `impute_new_data` function, there are no guarantees of record-level reproducibility in imputations between the kernel and new data. ### How to Make the Process Faster Multiple Imputation is one of the most robust ways to handle missing data - but it can take a long time. There are several strategies you can use to decrease the time a process takes to run: - Decrease `data_subset`. By default all non-missing datapoints for each variable are used to train the model and perform mean matching. This can cause the model training nearest-neighbors search to take a long time for large data. A subset of these points can be searched instead by using `data_subset`. - If categorical columns are taking a long time, you can use the `mean_match_fast_cat` scheme. You can also set different parameters specifically for categorical columns, like smaller `bagging_fraction` or `num_iterations`. - If you need to impute new data faster, compile the predictions with the `compile_candidate_preds` method. This stores the predictions for each model, so it does not need to be re-calculated at each iteration. - Convert your data to a numpy array. Numpy arrays are much faster to index. While indexing overhead is avoided as much as possible, there is no getting around it. Consider comverting to `float32` datatype as well, as it will cause the resulting object to take up much less memory. - Decrease `mean_match_candidates`. The maximum number of neighbors that are considered with the default parameters is 10. However, for large datasets, this can still be an expensive operation. Consider explicitly setting `mean_match_candidates` lower. - Use different lightgbm parameters. lightgbm is usually not the problem, however if a certain variable has a large number of classes, then the max number of trees actually grown is (\# classes) \* (n\_estimators). You can specifically decrease the bagging fraction or n\_estimators for large multi-class variables, or grow less trees in general. - Use a faster mean matching function. The default mean matching function uses the scipy.Spatial.KDtree algorithm. There are faster alternatives out there, if you think mean matching is the holdup. ### Imputing Data In Place It is possible to run the entire process without copying the dataset. If `copy_data=False`, then the data is referenced directly: ``` python kernel_inplace = mf.ImputationKernel( iris_amp, datasets=1, copy_data=False ) kernel_inplace.mice(2) ``` Note, that this probably won’t (but could) change the original dataset in undesirable ways. Throughout the `mice` procedure, imputed values are stored directly in the original data. At the end, the missing values are put back as `np.NaN`. We can also complete our original data in place: ``` python kernel_inplace.complete_data(dataset=0, inplace=True) print(iris_amp.isnull().sum(0)) ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 This is useful if the dataset is large, and copies can’t be made in memory. ## Diagnostic Plotting As of now, miceforest has four diagnostic plots available. ### Distribution of Imputed-Values We probably want to know how the imputed values are distributed. We can plot the original distribution beside the imputed distributions in each dataset by using the `plot_imputed_distributions` method of an `ImputationKernel` object: ``` python kernel.plot_imputed_distributions(wspace=0.3,hspace=0.3) ``` The red line is the original data, and each black line are the imputed values of each dataset. ### Convergence of Correlation We are probably interested in knowing how our values between datasets converged over the iterations. The `plot_correlations` method shows you a boxplot of the correlations between imputed values in every combination of datasets, at each iteration. This allows you to see how correlated the imputations are between datasets, as well as the convergence over iterations: ``` python kernel.plot_correlations() ``` ### Variable Importance We also may be interested in which variables were used to impute each variable. We can plot this information by using the `plot_feature_importance` method. ``` python kernel.plot_feature_importance(dataset=0, annot=True,cmap="YlGnBu",vmin=0, vmax=1) ``` The numbers shown are returned from the `lightgbm.Booster.feature_importance()` function. Each square represents the importance of the column variable in imputing the row variable. ### Mean Convergence If our data is not missing completely at random, we may see that it takes a few iterations for our models to get the distribution of imputations right. We can plot the average value of our imputations to see if this is occurring: ``` python kernel.plot_mean_convergence(wspace=0.3, hspace=0.4) ``` Our data was missing completely at random, so we don’t see any convergence occurring here. ## Using the Imputed Data To return the imputed data simply use the `complete_data` method: ``` python dataset_1 = kernel.complete_data(0) ``` This will return a single specified dataset. Multiple datasets are typically created so that some measure of confidence around each prediction can be created. Since we know what the original data looked like, we can cheat and see how well the imputations compare to the original data: ``` python acclist = [] for iteration in range(kernel.iteration_count()+1): species_na_count = kernel.na_counts[4] compdat = kernel.complete_data(dataset=0,iteration=iteration) # Record the accuract of the imputations of species. acclist.append( round(1-sum(compdat['species'] != iris['species'])/species_na_count,2) ) # acclist shows the accuracy of the imputations # over the iterations. print(acclist) ``` ## [0.35, 0.81, 0.84, 0.84, 0.89, 0.92, 0.89] In this instance, we went from a low accuracy (what is expected with random sampling) to a much higher accuracy. ## The MICE Algorithm Multiple Imputation by Chained Equations ‘fills in’ (imputes) missing data in a dataset through an iterative series of predictive models. In each iteration, each specified variable in the dataset is imputed using the other variables in the dataset. These iterations should be run until it appears that convergence has been met. This process is continued until all specified variables have been imputed. Additional iterations can be run if it appears that the average imputed values have not converged, although no more than 5 iterations are usually necessary. ### Common Use Cases ##### **Data Leakage:** MICE is particularly useful if missing values are associated with the target variable in a way that introduces leakage. For instance, let’s say you wanted to model customer retention at the time of sign up. A certain variable is collected at sign up or 1 month after sign up. The absence of that variable is a data leak, since it tells you that the customer did not retain for 1 month. ##### **Funnel Analysis:** Information is often collected at different stages of a ‘funnel’. MICE can be used to make educated guesses about the characteristics of entities at different points in a funnel. ##### **Confidence Intervals:** MICE can be used to impute missing values, however it is important to keep in mind that these imputed values are a prediction. Creating multiple datasets with different imputed values allows you to do two types of inference: - Imputed Value Distribution: A profile can be built for each imputed value, allowing you to make statements about the likely distribution of that value. - Model Prediction Distribution: With multiple datasets, you can build multiple models and create a distribution of predictions for each sample. Those samples with imputed values which were not able to be imputed with much confidence would have a larger variance in their predictions. ### Predictive Mean Matching `miceforest` can make use of a procedure called predictive mean matching (PMM) to select which values are imputed. PMM involves selecting a datapoint from the original, nonmissing data (candidates) which has a predicted value close to the predicted value of the missing sample (bachelors). The closest N (`mean_match_candidates` parameter) values are selected, from which a value is chosen at random. This can be specified on a column-by-column basis. Going into more detail from our example above, we see how this works in practice: This method is very useful if you have a variable which needs imputing which has any of the following characteristics: - Multimodal - Integer - Skewed ### Effects of Mean Matching As an example, let’s construct a dataset with some of the above characteristics: ``` python randst = np.random.RandomState(1991) # random uniform variable nrws = 1000 uniform_vec = randst.uniform(size=nrws) def make_bimodal(mean1,mean2,size): bimodal_1 = randst.normal(size=nrws, loc=mean1) bimodal_2 = randst.normal(size=nrws, loc=mean2) bimdvec = [] for i in range(size): bimdvec.append(randst.choice([bimodal_1[i], bimodal_2[i]])) return np.array(bimdvec) # Make 2 Bimodal Variables close_bimodal_vec = make_bimodal(2,-2,nrws) far_bimodal_vec = make_bimodal(3,-3,nrws) # Highly skewed variable correlated with Uniform_Variable skewed_vec = np.exp(uniform_vec*randst.uniform(size=nrws)*3) + randst.uniform(size=nrws)*3 # Integer variable correlated with Close_Bimodal_Variable and Uniform_Variable integer_vec = np.round(uniform_vec + close_bimodal_vec/3 + randst.uniform(size=nrws)*2) # Make a DataFrame dat = pd.DataFrame( { 'uniform_var':uniform_vec, 'close_bimodal_var':close_bimodal_vec, 'far_bimodal_var':far_bimodal_vec, 'skewed_var':skewed_vec, 'integer_var':integer_vec } ) # Ampute the data. ampdat = mf.ampute_data(dat,perc=0.25,random_state=randst) # Plot the original data import seaborn as sns import matplotlib.pyplot as plt g = sns.PairGrid(dat) g.map(plt.scatter,s=5) ``` We can see how our variables are distributed and correlated in the graph above. Now let’s run our imputation process twice, once using mean matching, and once using the model prediction. ``` python from miceforest import mean_match_default scheme_mmc_0 = mean_match_default.copy() scheme_mmc_5 = mean_match_default.copy() scheme_mmc_0.set_mean_match_candidates(0) scheme_mmc_5.set_mean_match_candidates(5) kernelmeanmatch = mf.ImputationKernel(ampdat, mean_match_scheme=scheme_mmc_5, datasets=1) kernelmodeloutput = mf.ImputationKernel(ampdat, mean_match_scheme=scheme_mmc_0, datasets=1) kernelmeanmatch.mice(2) kernelmodeloutput.mice(2) ``` Let’s look at the effect on the different variables. ##### With Mean Matching ``` python kernelmeanmatch.plot_imputed_distributions(wspace=0.2,hspace=0.4) ``` ##### Without Mean Matching ``` python kernelmodeloutput.plot_imputed_distributions(wspace=0.2,hspace=0.4) ``` You can see the effects that mean matching has, depending on the distribution of the data. Simply returning the value from the model prediction, while it may provide a better ‘fit’, will not provide imputations with a similair distribution to the original. This may be beneficial, depending on your goal. %package help Summary: Development documents and examples for miceforest Provides: python3-miceforest-doc %description help [![DOI](https://zenodo.org/badge/289387436.svg)](https://zenodo.org/badge/latestdoi/289387436) [![Downloads](https://static.pepy.tech/badge/miceforest)](https://pepy.tech/project/miceforest) [![Pypi](https://img.shields.io/pypi/v/miceforest.svg)](https://pypi.python.org/pypi/miceforest) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/miceforest.svg)](https://anaconda.org/conda-forge/miceforest) [![PyVersions](https://img.shields.io/pypi/pyversions/miceforest.svg?logo=python&logoColor=white)](https://pypi.org/project/miceforest/) [![tests + mypy](https://github.com/AnotherSamWilson/miceforest/actions/workflows/run_tests.yml/badge.svg)](https://github.com/AnotherSamWilson/miceforest/actions/workflows/run_tests.yml) [![Documentation Status](https://readthedocs.org/projects/miceforest/badge/?version=latest)](https://miceforest.readthedocs.io/en/latest/?badge=latest) [![CodeCov](https://codecov.io/gh/AnotherSamWilson/miceforest/branch/master/graphs/badge.svg?branch=master&service=github)](https://codecov.io/gh/AnotherSamWilson/miceforest) ## miceforest: Fast, Memory Efficient Imputation with LightGBM Fast, memory efficient Multiple Imputation by Chained Equations (MICE) with lightgbm. The R version of this package may be found [here](https://github.com/FarrellDay/miceRanger). `miceforest` was designed to be: - **Fast** - Uses lightgbm as a backend - Has efficient mean matching solutions. - Can utilize GPU training - **Flexible** - Can impute pandas dataframes and numpy arrays - Handles categorical data automatically - Fits into a sklearn pipeline - User can customize every aspect of the imputation process - **Production Ready** - Can impute new, unseen datasets quickly - Kernels are efficiently compressed during saving and loading - Data can be imputed in place to save memory - Can build models on non-missing data This document contains a thorough walkthrough of the package, benchmarks, and an introduction to multiple imputation. More information on MICE can be found in Stef van Buuren’s excellent online book, which you can find [here](https://stefvanbuuren.name/fimd/ch-introduction.html). #### Table of Contents: - [Package Meta](https://github.com/AnotherSamWilson/miceforest#Package-Meta) - [The Basics](https://github.com/AnotherSamWilson/miceforest#The-Basics) - [Basic Examples](https://github.com/AnotherSamWilson/miceforest#Basic-Examples) - [Customizing LightGBM Parameters](https://github.com/AnotherSamWilson/miceforest#Customizing-LightGBM-Parameters) - [Available Mean Match Schemes](https://github.com/AnotherSamWilson/miceforest#Controlling-Tree-Growth) - [Imputing New Data with Existing Models](https://github.com/AnotherSamWilson/miceforest#Imputing-New-Data-with-Existing-Models) - [Saving and Loading Kernels](https://github.com/AnotherSamWilson/miceforest#Saving-and-Loading-Kernels) - [Implementing sklearn Pipelines](https://github.com/AnotherSamWilson/miceforest#Implementing-sklearn-Pipelines) - [Advanced Features](https://github.com/AnotherSamWilson/miceforest#Advanced-Features) - [Customizing the Imputation Process](https://github.com/AnotherSamWilson/miceforest#Customizing-the-Imputation-Process) - [Building Models on Nonmissing Data](https://github.com/AnotherSamWilson/miceforest#Building-Models-on-Nonmissing-Data) - [Tuning Parameters](https://github.com/AnotherSamWilson/miceforest#Tuning-Parameters) - [On Reproducibility](https://github.com/AnotherSamWilson/miceforest#On-Reproducibility) - [How to Make the Process Faster](https://github.com/AnotherSamWilson/miceforest#How-to-Make-the-Process-Faster) - [Imputing Data In Place](https://github.com/AnotherSamWilson/miceforest#Imputing-Data-In-Place) - [Diagnostic Plotting](https://github.com/AnotherSamWilson/miceforest#Diagnostic-Plotting) - [Imputed Distributions](https://github.com/AnotherSamWilson/miceforest#Distribution-of-Imputed-Values) - [Correlation Convergence](https://github.com/AnotherSamWilson/miceforest#Convergence-of-Correlation) - [Variable Importance](https://github.com/AnotherSamWilson/miceforest#Variable-Importance) - [Mean Convergence](https://github.com/AnotherSamWilson/miceforest#Variable-Importance) - [Benchmarks](https://github.com/AnotherSamWilson/miceforest#Benchmarks) - [Using the Imputed Data](https://github.com/AnotherSamWilson/miceforest#Using-the-Imputed-Data) - [The MICE Algorithm](https://github.com/AnotherSamWilson/miceforest#The-MICE-Algorithm) - [Introduction](https://github.com/AnotherSamWilson/miceforest#The-MICE-Algorithm) - [Common Use Cases](https://github.com/AnotherSamWilson/miceforest#Common-Use-Cases) - [Predictive Mean Matching](https://github.com/AnotherSamWilson/miceforest#Predictive-Mean-Matching) - [Effects of Mean Matching](https://github.com/AnotherSamWilson/miceforest#Effects-of-Mean-Matching) ## Package Meta ### Installation This package can be installed using either pip or conda, through conda-forge: ``` bash # Using pip $ pip install miceforest --no-cache-dir # Using conda $ conda install -c conda-forge miceforest ``` You can also download the latest development version from this repository. If you want to install from github with conda, you must first run `conda install pip git`. ``` bash $ pip install git+https://github.com/AnotherSamWilson/miceforest.git ``` ### Classes miceforest has 3 main classes which the user will interact with: - [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) - This class contains the raw data off of which the `mice` algorithm is performed. During this process, models will be trained, and the imputed (predicted) values will be stored. These values can be used to fill in the missing values of the raw data. The raw data can be copied, or referenced directly. Models can be saved, and used to impute new datasets. - [`ImputedData`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputedData.html#miceforest.ImputedData) - The result of `ImputationKernel.impute_new_data(new_data)`. This contains the raw data in `new_data` as well as the imputed values. - [`MeanMatchScheme`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.MeanMatchScheme.html#miceforest.MeanMatchScheme) - Determines how mean matching should be carried out. There are 3 built-in mean match schemes available in miceforest, discussed below. ## The Basics We will be looking at a few simple examples of imputation. We need to load the packages, and define the data: ``` python import miceforest as mf from sklearn.datasets import load_iris import pandas as pd import numpy as np # Load data and introduce missing values iris = pd.concat(load_iris(as_frame=True,return_X_y=True),axis=1) iris.rename({"target": "species"}, inplace=True, axis=1) iris['species'] = iris['species'].astype('category') iris_amp = mf.ampute_data(iris,perc=0.25,random_state=1991) ``` ### Basic Examples If you only want to create a single imputed dataset, you can use [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) with some default settings: ``` python # Create kernel. kds = mf.ImputationKernel( iris_amp, save_all_iterations=True, random_state=1991 ) # Run the MICE algorithm for 2 iterations kds.mice(2) # Return the completed dataset. iris_complete = kds.complete_data() ``` There are also an array of plotting functions available, these are discussed below in the section [Diagnostic Plotting](https://github.com/AnotherSamWilson/miceforest#Diagnostic-Plotting). We usually don’t want to impute just a single dataset. In statistics, multiple imputation is a process by which the uncertainty/other effects caused by missing values can be examined by creating multiple different imputed datasets. [`ImputationKernel`](https://miceforest.readthedocs.io/en/latest/ik/miceforest.ImputationKernel.html#miceforest.ImputationKernel) can contain an arbitrary number of different datasets, all of which have gone through mutually exclusive imputation processes: ``` python # Create kernel. kernel = mf.ImputationKernel( iris_amp, datasets=4, save_all_iterations=True, random_state=1 ) # Run the MICE algorithm for 2 iterations on each of the datasets kernel.mice(2) # Printing the kernel will show you some high level information. print(kernel) ``` ## ## Class: ImputationKernel ## Datasets: 4 ## Iterations: 2 ## Data Samples: 150 ## Data Columns: 5 ## Imputed Variables: 5 ## save_all_iterations: True After we have run mice, we can obtain our completed dataset directly from the kernel: ``` python completed_dataset = kernel.complete_data(dataset=2) print(completed_dataset.isnull().sum(0)) ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 ### Customizing LightGBM Parameters Parameters can be passed directly to lightgbm in several different ways. Parameters you wish to apply globally to every model can simply be passed as kwargs to `mice`: ``` python # Run the MICE algorithm for 1 more iteration on the kernel with new parameters kernel.mice(iterations=1,n_estimators=50) ``` You can also pass pass variable-specific arguments to `variable_parameters` in mice. For instance, let’s say you noticed the imputation of the `[species]` column was taking a little longer, because it is multiclass. You could decrease the n\_estimators specifically for that column with: ``` python # Run the MICE algorithm for 2 more iterations on the kernel kernel.mice( iterations=1, variable_parameters={'species': {'n_estimators': 25}}, n_estimators=50 ) # Let's get the actual models for these variables: species_model = kernel.get_model(dataset=0,variable="species") sepalwidth_model = kernel.get_model(dataset=0,variable="sepal width (cm)") print( f"""Species used {str(species_model.params["num_iterations"])} iterations Sepal Width used {str(sepalwidth_model.params["num_iterations"])} iterations """ ) ``` ## Species used 25 iterations ## Sepal Width used 50 iterations In this scenario, any parameters specified in `variable_parameters` takes presidence over the kwargs. Since we can pass any parameters we want to LightGBM, we can completely customize how our models are built. That includes how the data should be modeled. If your data contains count data, or any other data which can be parameterized by lightgbm, you can simply specify that variable to be modeled with the corresponding objective function. For example, let’s pretend `sepal width (cm)` is a count field which can be parameterized by a Poisson distribution. Let’s also change our boosting method to gradient boosted trees: ``` python # Create kernel. cust_kernel = mf.ImputationKernel( iris_amp, datasets=1, random_state=1 ) cust_kernel.mice( iterations=1, variable_parameters={'sepal width (cm)': {'objective': 'poisson'}}, boosting = 'gbdt', min_sum_hessian_in_leaf=0.01 ) ``` Other nice parameters like `monotone_constraints` can also be passed. Setting the parameter `device: 'gpu'` will utilize GPU learning, if LightGBM is set up to do this on your machine. ### Available Mean Match Schemes Note: It is probably a good idea to read [this section](https://github.com/AnotherSamWilson/miceforest#Predictive-Mean-Matching) first, to get some context on how mean matching works. The class `miceforest.MeanMatchScheme` contains information about how mean matching should be performed, such as: 1) Mean matching functions 2) Mean matching candidates 3) How to get predictions from a lightgbm model 4) The datatypes predictions are stored as There are three pre-built mean matching schemes that come with `miceforest`: ``` python from miceforest import ( mean_match_default, mean_match_fast_cat, mean_match_shap ) # To get information for each, use help() # help(mean_match_default) ``` These schemes mostly differ in their strategy for performing mean matching - **mean\_match\_default** - medium speed, medium imputation quality - Categorical: perform a K Nearest Neighbors search on the candidate class probabilities, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - Numeric: Perform a K Nearest Neighbors search on the candidate predictions, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - **mean\_match\_fast\_cat** - fastest speed, lowest imputation quality - Categorical: return class based on random draw weighted by class probability for each sample. - Numeric: perform a K Nearest Neighbors search on the candidate class probabilities, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - **mean\_match\_shap** - slowest speed, highest imputation quality for large datasets - Categorical: perform a K Nearest Neighbors search on the candidate prediction shap values, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. - Numeric: perform a K Nearest Neighbors search on the candidate prediction shap values, where K = mmc. Select 1 at random, and choose the associated candidate value as the imputation value. As a special case, if the mean\_match\_candidates is set to 0, the following behavior is observed for all schemes: - Categorical: the class with the highest probability is chosen. - Numeric: the predicted value is used These mean matching schemes can be updated and customized, we show an example below in the advanced section. ### Imputing New Data with Existing Models Multiple Imputation can take a long time. If you wish to impute a dataset using the MICE algorithm, but don’t have time to train new models, it is possible to impute new datasets using a `ImputationKernel` object. The `impute_new_data()` function uses the models collected by `ImputationKernel` to perform multiple imputation without updating the models at each iteration: ``` python # Our 'new data' is just the first 15 rows of iris_amp from datetime import datetime # Define our new data as the first 15 rows new_data = iris_amp.iloc[range(15)] # Imputing new data can often be made faster by # first compiling candidate predictions kernel.compile_candidate_preds() start_t = datetime.now() new_data_imputed = kernel.impute_new_data(new_data=new_data) print(f"New Data imputed in {(datetime.now() - start_t).total_seconds()} seconds") ``` ## New Data imputed in 0.507115 seconds All of the imputation parameters (variable\_schema, mean\_match\_candidates, etc) will be carried over from the original `ImputationKernel` object. When mean matching, the candidate values are pulled from the original kernel dataset. To impute new data, the `save_models` parameter in `ImputationKernel` must be \> 0. If `save_models == 1`, the model from the latest iteration is saved for each variable. If `save_models > 1`, the model from each iteration is saved. This allows for new data to be imputed in a more similar fashion to the original mice procedure. ### Saving and Loading Kernels Kernels can be saved using the `.save_kernel()` method, and then loaded again using the `utils.load_kernel()` function. Internally, this procedure uses `blosc` and `dill` packages to do the following: 1. Convert working data to parquet bytes (if it is a pandas dataframe) 2. Serialize the kernel 3. Compress this serialization 4. Save to a file ### Implementing sklearn Pipelines kernels can be fit into sklearn pipelines to impute training and scoring datasets: ``` python import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline import miceforest as mf # Define our data X, y = make_classification(random_state=0) # Ampute and split the training data X = mf.utils.ampute_data(X) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Initialize our miceforest kernel. datasets parameter should be 1, # we don't want to return multiple datasets. pipe_kernel = mf.ImputationKernel(X_train, datasets=1) # Define our pipeline pipe = Pipeline([ ('impute', pipe_kernel), ('scaler', StandardScaler()), ]) # Fit on and transform our training data. # Only use 2 iterations of mice. X_train_t = pipe.fit_transform( X_train, y_train, impute__iterations=2 ) # Transform the test data as well X_test_t = pipe.transform(X_test) # Show that neither now have missing values. assert not np.any(np.isnan(X_train_t)) assert not np.any(np.isnan(X_test_t)) ``` ## Advanced Features Multiple imputation is a complex process. However, `miceforest` allows all of the major components to be switched out and customized by the user. ### Customizing the Imputation Process It is possible to heavily customize our imputation procedure by variable. By passing a named list to `variable_schema`, you can specify the predictor variables for each imputed variable. You can also specify `mean_match_candidates` and `data_subset` by variable by passing a dict of valid values, with variable names as keys. You can even replace the entire default mean matching function for certain objectives if desired. Below is an *extremely* convoluted setup, which you would probably never want to use. It simply shows what is possible: ``` python # Use the default mean match schema as our base from miceforest import mean_match_default mean_match_custom = mean_match_default.copy() # Define a mean matching function that # just randomly shuffles the predictions def custom_mmf(bachelor_preds): np.random.shuffle(bachelor_preds) return bachelor_preds # Specify that our custom function should be # used to perform mean matching on any variable # that was modeled with a poisson objective: mean_match_custom.set_mean_match_function( {"poisson": custom_mmf} ) # Set the mean match candidates by variable mean_match_custom.set_mean_match_candidates( { 'sepal width (cm)': 3, 'petal width (cm)': 0 } ) # Define which variables should be used to model others variable_schema = { 'sepal width (cm)': ['species','petal width (cm)'], 'petal width (cm)': ['species','sepal length (cm)'] } # Subset the candidate data to 50 rows for sepal width (cm). variable_subset = { 'sepal width (cm)': 50 } # Specify that petal width (cm) should be modeled by the # poisson objective. Our custom mean matching function # above will be used for this variable. variable_parameters = { 'petal width (cm)': {"objective": "poisson"} } cust_kernel = mf.ImputationKernel( iris_amp, datasets=3, mean_match_scheme=mean_match_custom, variable_schema=variable_schema, data_subset=variable_subset ) cust_kernel.mice(iterations=1, variable_parameters=variable_parameters) ``` The mean matching function can take any number of the following arguments. If a function does not take one of these arguments, then the process will not prepare that data for mean matching. ``` python from miceforest.MeanMatchScheme import AVAILABLE_MEAN_MATCH_ARGS print("\n".join(AVAILABLE_MEAN_MATCH_ARGS)) ``` ## mean_match_candidates ## lgb_booster ## bachelor_preds ## bachelor_features ## candidate_values ## candidate_features ## candidate_preds ## random_state ## hashed_seeds ### Building Models on Nonmissing Data The MICE process itself is used to impute missing data in a dataset. However, sometimes a variable can be fully recognized in the training data, but needs to be imputed later on in a different dataset. It is possible to train models to impute variables even if they have no missing values by setting `train_nonmissing=True`. In this case, `variable_schema` is treated as the list of variables to train models on. `imputation_order` only affects which variables actually have their values imputed, it does not affect which variables have models trained: ``` python orig_missing_cols = ["sepal length (cm)", "sepal width (cm)"] new_missing_cols = ["sepal length (cm)", "sepal width (cm)", "species"] # Training data only contains 2 columns with missing data iris_amp2 = iris.copy() iris_amp2[orig_missing_cols] = mf.ampute_data( iris_amp2[orig_missing_cols], perc=0.25, random_state=1991 ) # Specify that models should also be trained for species column var_sch = new_missing_cols cust_kernel = mf.ImputationKernel( iris_amp2, datasets=1, variable_schema=var_sch, train_nonmissing=True ) cust_kernel.mice(1) # New data has missing values in species column iris_amp2_new = iris.iloc[range(10),:].copy() iris_amp2_new[new_missing_cols] = mf.ampute_data( iris_amp2_new[new_missing_cols], perc=0.25, random_state=1991 ) # Species column can still be imputed iris_amp2_new_imp = cust_kernel.impute_new_data(iris_amp2_new) iris_amp2_new_imp.complete_data(0).isnull().sum() ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 Here, we knew that the species column in our new data would need to be imputed. Therefore, we specified that a model should be built for all 3 variables in the `variable_schema` (passing a dict of target - feature pairs would also have worked). ### Tuning Parameters `miceforest` allows you to tune the parameters on a kernel dataset. These parameters can then be used to build the models in future iterations of mice. In its most simple invocation, you can just call the function with the desired optimization steps: ``` python # Using the first ImputationKernel in kernel to tune parameters # with the default settings. optimal_parameters, losses = kernel.tune_parameters( dataset=0, optimization_steps=5 ) # Run mice with our newly tuned parameters. kernel.mice(1, variable_parameters=optimal_parameters) # The optimal parameters are kept in ImputationKernel.optimal_parameters: print(optimal_parameters) ``` ## {0: {'boosting': 'gbdt', 'num_iterations': 165, 'max_depth': 8, 'num_leaves': 20, 'min_data_in_leaf': 1, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.2498838792503861, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6020460898858531, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 17.807024990062555}, 1: {'boosting': 'gbdt', 'num_iterations': 94, 'max_depth': 8, 'num_leaves': 14, 'min_data_in_leaf': 4, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.7802435334180599, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6856668707631843, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 4.802568893662679}, 2: {'boosting': 'gbdt', 'num_iterations': 229, 'max_depth': 8, 'num_leaves': 4, 'min_data_in_leaf': 8, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.9565982004313843, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.6065024947204825, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 17.2138799939537}, 3: {'boosting': 'gbdt', 'num_iterations': 182, 'max_depth': 8, 'num_leaves': 20, 'min_data_in_leaf': 4, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.7251674145835884, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.9262368919526676, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'regression', 'learning_rate': 0.02, 'cat_smooth': 5.780326477879999}, 4: {'boosting': 'gbdt', 'num_iterations': 208, 'max_depth': 8, 'num_leaves': 4, 'min_data_in_leaf': 7, 'min_sum_hessian_in_leaf': 0.1, 'min_gain_to_split': 0.0, 'bagging_fraction': 0.6746301598613926, 'feature_fraction': 1.0, 'feature_fraction_bynode': 0.20999114041328495, 'bagging_freq': 1, 'verbosity': -1, 'objective': 'multiclass', 'num_class': 3, 'learning_rate': 0.02, 'cat_smooth': 8.604908973256704}} This will perform 10 fold cross validation on random samples of parameters. By default, all variables models are tuned. If you are curious about the default parameter space that is searched within, check out the `miceforest.default_lightgbm_parameters` module. The parameter tuning is pretty flexible. If you wish to set some model parameters static, or to change the bounds that are searched in, you can simply pass this information to either the `variable_parameters` parameter, `**kwbounds`, or both: ``` python # Using a complicated setup: optimal_parameters, losses = kernel.tune_parameters( dataset=0, variables = ['sepal width (cm)','species','petal width (cm)'], variable_parameters = { 'sepal width (cm)': {'bagging_fraction': 0.5}, 'species': {'bagging_freq': (5,10)} }, optimization_steps=5, extra_trees = [True, False] ) kernel.mice(1, variable_parameters=optimal_parameters) ``` In this example, we did a few things - we specified that only `sepal width (cm)`, `species`, and `petal width (cm)` should be tuned. We also specified some specific parameters in `variable_parameters.` Notice that `bagging_fraction` was passed as a scalar, `0.5`. This means that, for the variable `sepal width (cm)`, the parameter `bagging_fraction` will be set as that number and not be tuned. We did the opposite for `bagging_freq`. We specified bounds that the process should search in. We also passed the argument `extra_trees` as a list. Since it was passed to \*\*kwbounds, this parameter will apply to all variables that are being tuned. Passing values as a list tells the process that it should randomly sample values from the list, instead of treating them as set of counts to search within. The tuning process follows these rules for different parameter values it finds: - Scalar: That value is used, and not tuned. - Tuple: Should be length 2. Treated as the lower and upper bound to search in. - List: Treated as a distinct list of values to try randomly. ### On Reproducibility `miceforest` allows for different “levels” of reproducibility, global and record-level. ##### **Global Reproducibility** Global reproducibility ensures that the same values will be imputed if the same code is run multiple times. To ensure global reproducibility, all the user needs to do is set a `random_state` when the kernel is initialized. ##### **Record-Level Reproducibility** Sometimes we want to obtain reproducible imputations at the record level, without having to pass the same dataset. This is possible by passing a list of record-specific seeds to the `random_seed_array` parameter. This is useful if imputing new data multiple times, and you would like imputations for each row to match each time it is imputed. ``` python # Define seeds for the data, and impute iris random_seed_array = np.random.randint(9999, size=150) iris_imputed = kernel.impute_new_data( iris_amp, random_state=4, random_seed_array=random_seed_array ) # Select a random sample new_inds = np.random.choice(150, size=15) new_data = iris_amp.loc[new_inds] new_seeds = random_seed_array[new_inds] new_imputed = kernel.impute_new_data( new_data, random_state=4, random_seed_array=new_seeds ) # We imputed the same values for the 15 values each time, # because each record was associated with the same seed. assert new_imputed.complete_data(0).equals(iris_imputed.complete_data(0).loc[new_inds]) ``` Note that record-level reproducibility is only possible in the `impute_new_data` function, there are no guarantees of record-level reproducibility in imputations between the kernel and new data. ### How to Make the Process Faster Multiple Imputation is one of the most robust ways to handle missing data - but it can take a long time. There are several strategies you can use to decrease the time a process takes to run: - Decrease `data_subset`. By default all non-missing datapoints for each variable are used to train the model and perform mean matching. This can cause the model training nearest-neighbors search to take a long time for large data. A subset of these points can be searched instead by using `data_subset`. - If categorical columns are taking a long time, you can use the `mean_match_fast_cat` scheme. You can also set different parameters specifically for categorical columns, like smaller `bagging_fraction` or `num_iterations`. - If you need to impute new data faster, compile the predictions with the `compile_candidate_preds` method. This stores the predictions for each model, so it does not need to be re-calculated at each iteration. - Convert your data to a numpy array. Numpy arrays are much faster to index. While indexing overhead is avoided as much as possible, there is no getting around it. Consider comverting to `float32` datatype as well, as it will cause the resulting object to take up much less memory. - Decrease `mean_match_candidates`. The maximum number of neighbors that are considered with the default parameters is 10. However, for large datasets, this can still be an expensive operation. Consider explicitly setting `mean_match_candidates` lower. - Use different lightgbm parameters. lightgbm is usually not the problem, however if a certain variable has a large number of classes, then the max number of trees actually grown is (\# classes) \* (n\_estimators). You can specifically decrease the bagging fraction or n\_estimators for large multi-class variables, or grow less trees in general. - Use a faster mean matching function. The default mean matching function uses the scipy.Spatial.KDtree algorithm. There are faster alternatives out there, if you think mean matching is the holdup. ### Imputing Data In Place It is possible to run the entire process without copying the dataset. If `copy_data=False`, then the data is referenced directly: ``` python kernel_inplace = mf.ImputationKernel( iris_amp, datasets=1, copy_data=False ) kernel_inplace.mice(2) ``` Note, that this probably won’t (but could) change the original dataset in undesirable ways. Throughout the `mice` procedure, imputed values are stored directly in the original data. At the end, the missing values are put back as `np.NaN`. We can also complete our original data in place: ``` python kernel_inplace.complete_data(dataset=0, inplace=True) print(iris_amp.isnull().sum(0)) ``` ## sepal length (cm) 0 ## sepal width (cm) 0 ## petal length (cm) 0 ## petal width (cm) 0 ## species 0 ## dtype: int64 This is useful if the dataset is large, and copies can’t be made in memory. ## Diagnostic Plotting As of now, miceforest has four diagnostic plots available. ### Distribution of Imputed-Values We probably want to know how the imputed values are distributed. We can plot the original distribution beside the imputed distributions in each dataset by using the `plot_imputed_distributions` method of an `ImputationKernel` object: ``` python kernel.plot_imputed_distributions(wspace=0.3,hspace=0.3) ``` The red line is the original data, and each black line are the imputed values of each dataset. ### Convergence of Correlation We are probably interested in knowing how our values between datasets converged over the iterations. The `plot_correlations` method shows you a boxplot of the correlations between imputed values in every combination of datasets, at each iteration. This allows you to see how correlated the imputations are between datasets, as well as the convergence over iterations: ``` python kernel.plot_correlations() ``` ### Variable Importance We also may be interested in which variables were used to impute each variable. We can plot this information by using the `plot_feature_importance` method. ``` python kernel.plot_feature_importance(dataset=0, annot=True,cmap="YlGnBu",vmin=0, vmax=1) ``` The numbers shown are returned from the `lightgbm.Booster.feature_importance()` function. Each square represents the importance of the column variable in imputing the row variable. ### Mean Convergence If our data is not missing completely at random, we may see that it takes a few iterations for our models to get the distribution of imputations right. We can plot the average value of our imputations to see if this is occurring: ``` python kernel.plot_mean_convergence(wspace=0.3, hspace=0.4) ``` Our data was missing completely at random, so we don’t see any convergence occurring here. ## Using the Imputed Data To return the imputed data simply use the `complete_data` method: ``` python dataset_1 = kernel.complete_data(0) ``` This will return a single specified dataset. Multiple datasets are typically created so that some measure of confidence around each prediction can be created. Since we know what the original data looked like, we can cheat and see how well the imputations compare to the original data: ``` python acclist = [] for iteration in range(kernel.iteration_count()+1): species_na_count = kernel.na_counts[4] compdat = kernel.complete_data(dataset=0,iteration=iteration) # Record the accuract of the imputations of species. acclist.append( round(1-sum(compdat['species'] != iris['species'])/species_na_count,2) ) # acclist shows the accuracy of the imputations # over the iterations. print(acclist) ``` ## [0.35, 0.81, 0.84, 0.84, 0.89, 0.92, 0.89] In this instance, we went from a low accuracy (what is expected with random sampling) to a much higher accuracy. ## The MICE Algorithm Multiple Imputation by Chained Equations ‘fills in’ (imputes) missing data in a dataset through an iterative series of predictive models. In each iteration, each specified variable in the dataset is imputed using the other variables in the dataset. These iterations should be run until it appears that convergence has been met. This process is continued until all specified variables have been imputed. Additional iterations can be run if it appears that the average imputed values have not converged, although no more than 5 iterations are usually necessary. ### Common Use Cases ##### **Data Leakage:** MICE is particularly useful if missing values are associated with the target variable in a way that introduces leakage. For instance, let’s say you wanted to model customer retention at the time of sign up. A certain variable is collected at sign up or 1 month after sign up. The absence of that variable is a data leak, since it tells you that the customer did not retain for 1 month. ##### **Funnel Analysis:** Information is often collected at different stages of a ‘funnel’. MICE can be used to make educated guesses about the characteristics of entities at different points in a funnel. ##### **Confidence Intervals:** MICE can be used to impute missing values, however it is important to keep in mind that these imputed values are a prediction. Creating multiple datasets with different imputed values allows you to do two types of inference: - Imputed Value Distribution: A profile can be built for each imputed value, allowing you to make statements about the likely distribution of that value. - Model Prediction Distribution: With multiple datasets, you can build multiple models and create a distribution of predictions for each sample. Those samples with imputed values which were not able to be imputed with much confidence would have a larger variance in their predictions. ### Predictive Mean Matching `miceforest` can make use of a procedure called predictive mean matching (PMM) to select which values are imputed. PMM involves selecting a datapoint from the original, nonmissing data (candidates) which has a predicted value close to the predicted value of the missing sample (bachelors). The closest N (`mean_match_candidates` parameter) values are selected, from which a value is chosen at random. This can be specified on a column-by-column basis. Going into more detail from our example above, we see how this works in practice: This method is very useful if you have a variable which needs imputing which has any of the following characteristics: - Multimodal - Integer - Skewed ### Effects of Mean Matching As an example, let’s construct a dataset with some of the above characteristics: ``` python randst = np.random.RandomState(1991) # random uniform variable nrws = 1000 uniform_vec = randst.uniform(size=nrws) def make_bimodal(mean1,mean2,size): bimodal_1 = randst.normal(size=nrws, loc=mean1) bimodal_2 = randst.normal(size=nrws, loc=mean2) bimdvec = [] for i in range(size): bimdvec.append(randst.choice([bimodal_1[i], bimodal_2[i]])) return np.array(bimdvec) # Make 2 Bimodal Variables close_bimodal_vec = make_bimodal(2,-2,nrws) far_bimodal_vec = make_bimodal(3,-3,nrws) # Highly skewed variable correlated with Uniform_Variable skewed_vec = np.exp(uniform_vec*randst.uniform(size=nrws)*3) + randst.uniform(size=nrws)*3 # Integer variable correlated with Close_Bimodal_Variable and Uniform_Variable integer_vec = np.round(uniform_vec + close_bimodal_vec/3 + randst.uniform(size=nrws)*2) # Make a DataFrame dat = pd.DataFrame( { 'uniform_var':uniform_vec, 'close_bimodal_var':close_bimodal_vec, 'far_bimodal_var':far_bimodal_vec, 'skewed_var':skewed_vec, 'integer_var':integer_vec } ) # Ampute the data. ampdat = mf.ampute_data(dat,perc=0.25,random_state=randst) # Plot the original data import seaborn as sns import matplotlib.pyplot as plt g = sns.PairGrid(dat) g.map(plt.scatter,s=5) ``` We can see how our variables are distributed and correlated in the graph above. Now let’s run our imputation process twice, once using mean matching, and once using the model prediction. ``` python from miceforest import mean_match_default scheme_mmc_0 = mean_match_default.copy() scheme_mmc_5 = mean_match_default.copy() scheme_mmc_0.set_mean_match_candidates(0) scheme_mmc_5.set_mean_match_candidates(5) kernelmeanmatch = mf.ImputationKernel(ampdat, mean_match_scheme=scheme_mmc_5, datasets=1) kernelmodeloutput = mf.ImputationKernel(ampdat, mean_match_scheme=scheme_mmc_0, datasets=1) kernelmeanmatch.mice(2) kernelmodeloutput.mice(2) ``` Let’s look at the effect on the different variables. ##### With Mean Matching ``` python kernelmeanmatch.plot_imputed_distributions(wspace=0.2,hspace=0.4) ``` ##### Without Mean Matching ``` python kernelmodeloutput.plot_imputed_distributions(wspace=0.2,hspace=0.4) ``` You can see the effects that mean matching has, depending on the distribution of the data. Simply returning the value from the model prediction, while it may provide a better ‘fit’, will not provide imputations with a similair distribution to the original. This may be beneficial, depending on your goal. %prep %autosetup -n miceforest-5.6.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-miceforest -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Sun Apr 23 2023 Python_Bot - 5.6.3-1 - Package Spec generated