%global _empty_manifest_terminate_build 0 Name: python-PyKrige Version: 1.7.0 Release: 1 Summary: Kriging Toolkit for Python. License: BSD-3-Clause URL: https://github.com/GeoStat-Framework/PyKrige Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2c/d4/712e81c60423a036442acd11f30590c101b579de5e3531633b93b84b0112/PyKrige-1.7.0.tar.gz Requires: python3-numpy Requires: python3-scipy Requires: python3-gstools Requires: python3-scipy Requires: python3-pillow Requires: python3-scikit-learn Requires: python3-m2r2 Requires: python3-matplotlib Requires: python3-numpydoc Requires: python3-sphinx Requires: python3-sphinx-gallery Requires: python3-sphinx-rtd-theme Requires: python3-matplotlib Requires: python3-scikit-learn Requires: python3-pytest-cov Requires: python3-scikit-learn Requires: python3-gstools %description # PyKrige [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3738604.svg)](https://doi.org/10.5281/zenodo.3738604) [![PyPI version](https://badge.fury.io/py/PyKrige.svg)](https://badge.fury.io/py/PyKrige) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/pykrige.svg)](https://anaconda.org/conda-forge/pykrige) [![Build Status](https://github.com/GeoStat-Framework/PyKrige/workflows/Continuous%20Integration/badge.svg?branch=main)](https://github.com/GeoStat-Framework/PyKrige/actions) [![Coverage Status](https://coveralls.io/repos/github/GeoStat-Framework/PyKrige/badge.svg?branch=main)](https://coveralls.io/github/GeoStat-Framework/PyKrige?branch=main) [![Documentation Status](https://readthedocs.org/projects/pykrige/badge/?version=stable)](http://pykrige.readthedocs.io/en/stable/?badge=stable) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

PyKrige-LOGO

Kriging Toolkit for Python. ## Purpose The code supports 2D and 3D ordinary and universal kriging. Standard variogram models (linear, power, spherical, gaussian, exponential) are built in, but custom variogram models can also be used. The 2D universal kriging code currently supports regional-linear, point-logarithmic, and external drift terms, while the 3D universal kriging code supports a regional-linear drift term in all three spatial dimensions. Both universal kriging classes also support generic 'specified' and 'functional' drift capabilities. With the 'specified' drift capability, the user may manually specify the values of the drift(s) at each data point and all grid points. With the 'functional' drift capability, the user may provide callable function(s) of the spatial coordinates that define the drift(s). The package includes a module that contains functions that should be useful in working with ASCII grid files (`\*.asc`). See the documentation at for more details and examples. ## Installation PyKrige requires Python 3.5+ as well as numpy, scipy. It can be installed from PyPi with, ``` bash pip install pykrige ``` scikit-learn is an optional dependency needed for parameter tuning and regression kriging. matplotlib is an optional dependency needed for plotting. If you use conda, PyKrige can be installed from the conda-forge channel with, ``` bash conda install -c conda-forge pykrige ``` ## Features ### Kriging algorithms - `OrdinaryKriging`: 2D ordinary kriging with estimated mean - `UniversalKriging`: 2D universal kriging providing drift terms - `OrdinaryKriging3D`: 3D ordinary kriging - `UniversalKriging3D`: 3D universal kriging - `RegressionKriging`: An implementation of Regression-Kriging - `ClassificationKriging`: An implementation of Simplicial Indicator Kriging ### Wrappers - `rk.Krige`: A scikit-learn wrapper class for Ordinary and Universal Kriging ### Tools - `kriging_tools.write_asc_grid`: Writes gridded data to ASCII grid file (`\*.asc`) - `kriging_tools.read_asc_grid`: Reads ASCII grid file (`\*.asc`) - `kriging_tools.write_zmap_grid`: Writes gridded data to zmap file (`\*.zmap`) - `kriging_tools.read_zmap_grid`: Reads zmap file (`\*.zmap`) ### Kriging Parameters Tuning A scikit-learn compatible API for parameter tuning by cross-validation is exposed in [sklearn.model\_selection.GridSearchCV](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html). See the [Krige CV](http://pykrige.readthedocs.io/en/latest/examples/08_krige_cv.html#sphx-glr-examples-08-krige-cv-py) example for a more practical illustration. ### Regression Kriging [Regression kriging](https://en.wikipedia.org/wiki/Regression-Kriging) can be performed with [pykrige.rk.RegressionKriging](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html). This class takes as parameters a scikit-learn regression model, and details of either the `OrdinaryKriging` or the `UniversalKriging` class, and performs a correction step on the ML regression prediction. A demonstration of the regression kriging is provided in the [corresponding example](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html#sphx-glr-examples-07-regression-kriging2d-py). ### Classification Kriging [Simplifical Indicator kriging](https://www.sciencedirect.com/science/article/abs/pii/S1002070508600254) can be performed with [pykrige.ck.ClassificationKriging](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html). This class takes as parameters a scikit-learn classification model, and details of either the `OrdinaryKriging` or the `UniversalKriging` class, and performs a correction step on the ML classification prediction. A demonstration of the classification kriging is provided in the [corresponding example](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html#sphx-glr-examples-10-classification-kriging2d-py). ## License PyKrige uses the BSD 3-Clause License. %package -n python3-PyKrige Summary: Kriging Toolkit for Python. Provides: python-PyKrige BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip BuildRequires: python3-cffi BuildRequires: gcc BuildRequires: gdb %description -n python3-PyKrige # PyKrige [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3738604.svg)](https://doi.org/10.5281/zenodo.3738604) [![PyPI version](https://badge.fury.io/py/PyKrige.svg)](https://badge.fury.io/py/PyKrige) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/pykrige.svg)](https://anaconda.org/conda-forge/pykrige) [![Build Status](https://github.com/GeoStat-Framework/PyKrige/workflows/Continuous%20Integration/badge.svg?branch=main)](https://github.com/GeoStat-Framework/PyKrige/actions) [![Coverage Status](https://coveralls.io/repos/github/GeoStat-Framework/PyKrige/badge.svg?branch=main)](https://coveralls.io/github/GeoStat-Framework/PyKrige?branch=main) [![Documentation Status](https://readthedocs.org/projects/pykrige/badge/?version=stable)](http://pykrige.readthedocs.io/en/stable/?badge=stable) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

PyKrige-LOGO

Kriging Toolkit for Python. ## Purpose The code supports 2D and 3D ordinary and universal kriging. Standard variogram models (linear, power, spherical, gaussian, exponential) are built in, but custom variogram models can also be used. The 2D universal kriging code currently supports regional-linear, point-logarithmic, and external drift terms, while the 3D universal kriging code supports a regional-linear drift term in all three spatial dimensions. Both universal kriging classes also support generic 'specified' and 'functional' drift capabilities. With the 'specified' drift capability, the user may manually specify the values of the drift(s) at each data point and all grid points. With the 'functional' drift capability, the user may provide callable function(s) of the spatial coordinates that define the drift(s). The package includes a module that contains functions that should be useful in working with ASCII grid files (`\*.asc`). See the documentation at for more details and examples. ## Installation PyKrige requires Python 3.5+ as well as numpy, scipy. It can be installed from PyPi with, ``` bash pip install pykrige ``` scikit-learn is an optional dependency needed for parameter tuning and regression kriging. matplotlib is an optional dependency needed for plotting. If you use conda, PyKrige can be installed from the conda-forge channel with, ``` bash conda install -c conda-forge pykrige ``` ## Features ### Kriging algorithms - `OrdinaryKriging`: 2D ordinary kriging with estimated mean - `UniversalKriging`: 2D universal kriging providing drift terms - `OrdinaryKriging3D`: 3D ordinary kriging - `UniversalKriging3D`: 3D universal kriging - `RegressionKriging`: An implementation of Regression-Kriging - `ClassificationKriging`: An implementation of Simplicial Indicator Kriging ### Wrappers - `rk.Krige`: A scikit-learn wrapper class for Ordinary and Universal Kriging ### Tools - `kriging_tools.write_asc_grid`: Writes gridded data to ASCII grid file (`\*.asc`) - `kriging_tools.read_asc_grid`: Reads ASCII grid file (`\*.asc`) - `kriging_tools.write_zmap_grid`: Writes gridded data to zmap file (`\*.zmap`) - `kriging_tools.read_zmap_grid`: Reads zmap file (`\*.zmap`) ### Kriging Parameters Tuning A scikit-learn compatible API for parameter tuning by cross-validation is exposed in [sklearn.model\_selection.GridSearchCV](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html). See the [Krige CV](http://pykrige.readthedocs.io/en/latest/examples/08_krige_cv.html#sphx-glr-examples-08-krige-cv-py) example for a more practical illustration. ### Regression Kriging [Regression kriging](https://en.wikipedia.org/wiki/Regression-Kriging) can be performed with [pykrige.rk.RegressionKriging](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html). This class takes as parameters a scikit-learn regression model, and details of either the `OrdinaryKriging` or the `UniversalKriging` class, and performs a correction step on the ML regression prediction. A demonstration of the regression kriging is provided in the [corresponding example](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html#sphx-glr-examples-07-regression-kriging2d-py). ### Classification Kriging [Simplifical Indicator kriging](https://www.sciencedirect.com/science/article/abs/pii/S1002070508600254) can be performed with [pykrige.ck.ClassificationKriging](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html). This class takes as parameters a scikit-learn classification model, and details of either the `OrdinaryKriging` or the `UniversalKriging` class, and performs a correction step on the ML classification prediction. A demonstration of the classification kriging is provided in the [corresponding example](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html#sphx-glr-examples-10-classification-kriging2d-py). ## License PyKrige uses the BSD 3-Clause License. %package help Summary: Development documents and examples for PyKrige Provides: python3-PyKrige-doc %description help # PyKrige [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3738604.svg)](https://doi.org/10.5281/zenodo.3738604) [![PyPI version](https://badge.fury.io/py/PyKrige.svg)](https://badge.fury.io/py/PyKrige) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/pykrige.svg)](https://anaconda.org/conda-forge/pykrige) [![Build Status](https://github.com/GeoStat-Framework/PyKrige/workflows/Continuous%20Integration/badge.svg?branch=main)](https://github.com/GeoStat-Framework/PyKrige/actions) [![Coverage Status](https://coveralls.io/repos/github/GeoStat-Framework/PyKrige/badge.svg?branch=main)](https://coveralls.io/github/GeoStat-Framework/PyKrige?branch=main) [![Documentation Status](https://readthedocs.org/projects/pykrige/badge/?version=stable)](http://pykrige.readthedocs.io/en/stable/?badge=stable) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

PyKrige-LOGO

Kriging Toolkit for Python. ## Purpose The code supports 2D and 3D ordinary and universal kriging. Standard variogram models (linear, power, spherical, gaussian, exponential) are built in, but custom variogram models can also be used. The 2D universal kriging code currently supports regional-linear, point-logarithmic, and external drift terms, while the 3D universal kriging code supports a regional-linear drift term in all three spatial dimensions. Both universal kriging classes also support generic 'specified' and 'functional' drift capabilities. With the 'specified' drift capability, the user may manually specify the values of the drift(s) at each data point and all grid points. With the 'functional' drift capability, the user may provide callable function(s) of the spatial coordinates that define the drift(s). The package includes a module that contains functions that should be useful in working with ASCII grid files (`\*.asc`). See the documentation at for more details and examples. ## Installation PyKrige requires Python 3.5+ as well as numpy, scipy. It can be installed from PyPi with, ``` bash pip install pykrige ``` scikit-learn is an optional dependency needed for parameter tuning and regression kriging. matplotlib is an optional dependency needed for plotting. If you use conda, PyKrige can be installed from the conda-forge channel with, ``` bash conda install -c conda-forge pykrige ``` ## Features ### Kriging algorithms - `OrdinaryKriging`: 2D ordinary kriging with estimated mean - `UniversalKriging`: 2D universal kriging providing drift terms - `OrdinaryKriging3D`: 3D ordinary kriging - `UniversalKriging3D`: 3D universal kriging - `RegressionKriging`: An implementation of Regression-Kriging - `ClassificationKriging`: An implementation of Simplicial Indicator Kriging ### Wrappers - `rk.Krige`: A scikit-learn wrapper class for Ordinary and Universal Kriging ### Tools - `kriging_tools.write_asc_grid`: Writes gridded data to ASCII grid file (`\*.asc`) - `kriging_tools.read_asc_grid`: Reads ASCII grid file (`\*.asc`) - `kriging_tools.write_zmap_grid`: Writes gridded data to zmap file (`\*.zmap`) - `kriging_tools.read_zmap_grid`: Reads zmap file (`\*.zmap`) ### Kriging Parameters Tuning A scikit-learn compatible API for parameter tuning by cross-validation is exposed in [sklearn.model\_selection.GridSearchCV](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html). See the [Krige CV](http://pykrige.readthedocs.io/en/latest/examples/08_krige_cv.html#sphx-glr-examples-08-krige-cv-py) example for a more practical illustration. ### Regression Kriging [Regression kriging](https://en.wikipedia.org/wiki/Regression-Kriging) can be performed with [pykrige.rk.RegressionKriging](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html). This class takes as parameters a scikit-learn regression model, and details of either the `OrdinaryKriging` or the `UniversalKriging` class, and performs a correction step on the ML regression prediction. A demonstration of the regression kriging is provided in the [corresponding example](http://pykrige.readthedocs.io/en/latest/examples/07_regression_kriging2d.html#sphx-glr-examples-07-regression-kriging2d-py). ### Classification Kriging [Simplifical Indicator kriging](https://www.sciencedirect.com/science/article/abs/pii/S1002070508600254) can be performed with [pykrige.ck.ClassificationKriging](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html). This class takes as parameters a scikit-learn classification model, and details of either the `OrdinaryKriging` or the `UniversalKriging` class, and performs a correction step on the ML classification prediction. A demonstration of the classification kriging is provided in the [corresponding example](http://pykrige.readthedocs.io/en/latest/examples/10_classification_kriging2d.html#sphx-glr-examples-10-classification-kriging2d-py). ## License PyKrige uses the BSD 3-Clause License. %prep %autosetup -n PyKrige-1.7.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-PyKrige -f filelist.lst %dir %{python3_sitearch}/* %files help -f doclist.lst %{_docdir}/* %changelog * Sun Apr 23 2023 Python_Bot - 1.7.0-1 - Package Spec generated