%global _empty_manifest_terminate_build 0 Name: python-pkbar Version: 0.5 Release: 1 Summary: Keras Progress Bar for PyTorch License: Apache License 2.0 URL: https://github.com/yueyericardo/pkbar Source0: https://mirrors.nju.edu.cn/pypi/web/packages/12/4d/c4210a0743ef62ddfa96b3b501c71a214718189f65df8a22f1eb37f256e3/pkbar-0.5.tar.gz BuildArch: noarch Requires: python3-numpy %description # pkbar ![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar) Keras style progressbar for pytorch (PK Bar) ### 1. Show - `pkbar.Pbar` (progress bar) ``` loading and processing dataset 10/10 [==============================] - 1.0s ``` - `pkbar.Kbar` (keras bar) ``` Epoch: 1/3 100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269 Epoch: 2/3 100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261 Epoch: 3/3 100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254 ``` ### 2. Install ``` pip install pkbar ``` ### 3. Usage - `pkbar.Pbar` (progress bar) ```python import pkbar import time pbar = pkbar.Pbar(name='loading and processing dataset', target=10) for i in range(10): time.sleep(0.1) pbar.update(i) ``` ``` loading and processing dataset 10/10 [==============================] - 1.0s ``` - `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16) ```python import pkbar import torch # training loop train_per_epoch = num_of_batches_per_epoch for epoch in range(num_epochs): ################################### Initialization ######################################## kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False) # By default, all metrics are averaged over time. If you don't want this behavior, you could either: # 1. Set always_stateful to True, or # 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is. # All others will be averaged by the progbar before display. ########################################################################################### # training for i in range(train_per_epoch): outputs = model(inputs) train_loss = criterion(outputs, targets) train_rmse = torch.sqrt(train_loss) optimizer.zero_grad() train_loss.backward() optimizer.step() ############################# Update after each batch ################################## kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)]) ######################################################################################## # validation outputs = model(inputs) val_loss = criterion(outputs, targets) val_rmse = torch.sqrt(val_loss) ################################ Add validation metrics ################################### kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)]) ########################################################################################### ``` ``` Epoch: 1/3 100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269 Epoch: 2/3 100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261 Epoch: 3/3 100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254 ``` ### 4. Acknowledge Keras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313) %package -n python3-pkbar Summary: Keras Progress Bar for PyTorch Provides: python-pkbar BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pkbar # pkbar ![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar) Keras style progressbar for pytorch (PK Bar) ### 1. Show - `pkbar.Pbar` (progress bar) ``` loading and processing dataset 10/10 [==============================] - 1.0s ``` - `pkbar.Kbar` (keras bar) ``` Epoch: 1/3 100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269 Epoch: 2/3 100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261 Epoch: 3/3 100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254 ``` ### 2. Install ``` pip install pkbar ``` ### 3. Usage - `pkbar.Pbar` (progress bar) ```python import pkbar import time pbar = pkbar.Pbar(name='loading and processing dataset', target=10) for i in range(10): time.sleep(0.1) pbar.update(i) ``` ``` loading and processing dataset 10/10 [==============================] - 1.0s ``` - `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16) ```python import pkbar import torch # training loop train_per_epoch = num_of_batches_per_epoch for epoch in range(num_epochs): ################################### Initialization ######################################## kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False) # By default, all metrics are averaged over time. If you don't want this behavior, you could either: # 1. Set always_stateful to True, or # 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is. # All others will be averaged by the progbar before display. ########################################################################################### # training for i in range(train_per_epoch): outputs = model(inputs) train_loss = criterion(outputs, targets) train_rmse = torch.sqrt(train_loss) optimizer.zero_grad() train_loss.backward() optimizer.step() ############################# Update after each batch ################################## kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)]) ######################################################################################## # validation outputs = model(inputs) val_loss = criterion(outputs, targets) val_rmse = torch.sqrt(val_loss) ################################ Add validation metrics ################################### kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)]) ########################################################################################### ``` ``` Epoch: 1/3 100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269 Epoch: 2/3 100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261 Epoch: 3/3 100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254 ``` ### 4. Acknowledge Keras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313) %package help Summary: Development documents and examples for pkbar Provides: python3-pkbar-doc %description help # pkbar ![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar) Keras style progressbar for pytorch (PK Bar) ### 1. Show - `pkbar.Pbar` (progress bar) ``` loading and processing dataset 10/10 [==============================] - 1.0s ``` - `pkbar.Kbar` (keras bar) ``` Epoch: 1/3 100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269 Epoch: 2/3 100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261 Epoch: 3/3 100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254 ``` ### 2. Install ``` pip install pkbar ``` ### 3. Usage - `pkbar.Pbar` (progress bar) ```python import pkbar import time pbar = pkbar.Pbar(name='loading and processing dataset', target=10) for i in range(10): time.sleep(0.1) pbar.update(i) ``` ``` loading and processing dataset 10/10 [==============================] - 1.0s ``` - `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16) ```python import pkbar import torch # training loop train_per_epoch = num_of_batches_per_epoch for epoch in range(num_epochs): ################################### Initialization ######################################## kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False) # By default, all metrics are averaged over time. If you don't want this behavior, you could either: # 1. Set always_stateful to True, or # 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is. # All others will be averaged by the progbar before display. ########################################################################################### # training for i in range(train_per_epoch): outputs = model(inputs) train_loss = criterion(outputs, targets) train_rmse = torch.sqrt(train_loss) optimizer.zero_grad() train_loss.backward() optimizer.step() ############################# Update after each batch ################################## kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)]) ######################################################################################## # validation outputs = model(inputs) val_loss = criterion(outputs, targets) val_rmse = torch.sqrt(val_loss) ################################ Add validation metrics ################################### kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)]) ########################################################################################### ``` ``` Epoch: 1/3 100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269 Epoch: 2/3 100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261 Epoch: 3/3 100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254 ``` ### 4. Acknowledge Keras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313) %prep %autosetup -n pkbar-0.5 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pkbar -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 25 2023 Python_Bot - 0.5-1 - Package Spec generated