%global _empty_manifest_terminate_build 0 Name: python-hyperscience-saas-client Version: 1.0.9 Release: 1 Summary: hyperscience saas client library License: Apache License 2.0 URL: https://pypi.org/project/hyperscience-saas-client/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/87/1a/220ad61b8abcae4d9a622e332fea83ed27d4b876574ac65b58ed5f9f77c6/hyperscience-saas-client-1.0.9.tar.gz BuildArch: noarch Requires: python3-requests Requires: python3-urllib3 %description # Hyperscience SaaS Client Library With the Hyperscience SaaS client library, you can authenticate to SaaS instances of Hyperscience and make API requests. ## Quickstart Guide ### 1. Install Hyperscience SaaS Client Library Install the Hyperscience SAAS Client Library from PyPI: ```shell pip install hyperscience-saas-client ``` To upgrade the package: ```shell pip install hyperscience-saas-client --upgrade ``` ### 2. Set Up API Credentials Retrieve your API credentials from your Hyperscience SaaS instance. To learn more, see API Access for SaaS Instances. ### 3. Configure Authentication Parameters To configure authentication, the ApiController uses a Configuration class. A configuration object contains: - Authentication domain ("auth_server”) - Hyperscience's domain to make the requests to ("hs_domain") - Timeout for requests in seconds (optional) ("request_timeout") By default, these values are used: ```json { "auth_server": "login.hyperscience.net", "hs_domain": "cloud.hyperscience.net", "request_timeout": 120 } ``` You can set your Configuration object in one of the following three ways: #### Passing a JSON object ```python from hyperscience import Configuration config = '{ "auth_server": "login.hyperscience.net", "hs_domain": "cloud.hyperscience.net" }' configuration = Configuration.from_json_string(config) ``` #### Full path to a JSON file containing the configuration ```python from hyperscience import Configuration configuration = Configuration.from_file('/absolute/path/to/config.json') ``` #### Specifying the parameters ```python from hyperscience import Configuration configuration = Configuration(hs_domain='cloud.hyperscience.net') # or configuration = Configuration(hs_domain='cloud.hyperscience.net', auth_server='login.hyperscience.net') # or configuration = Configuration( hs_domain='cloud.hyperscience.net', auth_server='login.hyperscience.net', request_timeout=60 ) ``` ### 4. Provide Credentials There are two options for providing credentials: #### a. Environment Variables (Recommended) To use environment variables to store your credentials: 1. Put your client_id in an environment variable called HS_CLIENT_ID 2. Put the client_secret in an environment variable called HS_CLIENT_SECRET To load them and pass them to ApiController, you can do it with: ```python from hyperscience import EnvironmentCredentialsProvider, Configuration, ApiController credentials = EnvironmentCredentialsProvider() configuration = Configuration('') api_controller = ApiController(configuration, credentials) ``` #### b. Pass them via a CredentialsProvider object If you prefer having credentials loaded from a different place instead of environment variables, you can create an instance of the CredentialsProvider class and pass it to ApiController: ```python from hyperscience import CredentialsProvider, Configuration, ApiController credentials = CredentialsProvider('client_id', 'client_secret') configuration = Configuration('') api_controller = ApiController(configuration, credentials) ``` > **WARNING**: Keeping credentials in code is a bad practice. CredentialsProvider is best used when loading credentials from secret stores. ### 5. Make a Test Call Finally, ensure that your setup is correct by making a test call to GET submissions from your instance. ```python from hyperscience import ApiController, CredentialsProvider, Configuration credentials = CredentialsProvider('', '') configuration = Configuration('') api_controller = ApiController(configuration, credentials) response = api_controller.get('/api/v5/submissions') ``` ## Using the ApiController The ApiController allows users to interact with the Hyperscience API using easy-to-use wrapper methods. You can find Hyperscience’s API documentation here. ### Supported HTTP Methods **GET**, **POST** and **PUT** operations are supported by the ApiController.\ Content (query params, encoded url parameters or files input) is accepted in the form of Dict[str, str] or List[Tuple[str, str]].\ To support multiple parameters of the same type (e.g. 'file' for submitting multiple files), parameters should be passed as List[Tuple[str, str]]. #### Examples ##### Configuration and Setup ```python from hyperscience import ApiController, Configuration from hyperscience.api import DataSupportedMediaType, PayloadSupportedMediaType # Create an ApiController instance api_controller = ApiController(Configuration('cloud.hyperscience.net')) ``` #### GET Submissions ```python # GET request with query params provided in dictionary query_params = {'state': 'complete'} res = api_controller.get('/api/v5/submissions', query_params) print(res, res.content) # GET request with query params provided in List[Tuple] format query_params = [('state', 'complete')] res = api_controller.get('/api/v5/submissions', query_params) print(res, res.content) ``` #### POST a New Submission using URL-Encoded Form. ```python # POST request with WwwFormUrlEncoded content-type to submit files from remote servers # with List[Tuple] (multiple identical keys, e.g. multiple files) data = [ ('file', 'https://www.dropbox.com/demo-long.pdf'), ( 'file', 's3://hyperscience/bucket/form1.pdf', ), ('machine_only', True), ] res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) # POST request to submit files from remote servers with a dictionary (unique keys) data = { 'file': 'https://www.dropbox.com/demo-long.pdf', 'machine_only': True, } res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) # POST request to submit files from remote servers with a dictionary (unique keys) data = { 'file': 'https://www.dropbox.com/demo-long.pdf', 'machine_only': True, } res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) ``` #### POST a New Submission Using MultipartFormData ```python # POST request with MultipartFormData content-type to upload files from local filesystem with dictionary (unique keys) data = {'file': '/absolute/path/to/file.pdf', 'machine_only': True} res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.MULTIPART_FORM_DATA) print(res, res.content) # POST request with MultipartFormData content-type to upload files from local filesystem with List[Tuple] (multiple identical keys, e.g. multiple files) data = [ ('file', '/absolute/path/to/file.pdf'), ('file', '/absolute/path/to/file2.pdf'), ('machine_only', True), ] res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.MULTIPART_FORM_DATA) print(res, res.content) ``` #### POST a New Submission Using JSON POST request with ApplicationJson content-type to submit base 64 encoded files using a dictionary ```python json_data = { "metadata": {}, "machine_only": True, "goal_duration_minutes": 5, "single_document_per_page": True, "restrictions": [], "source_routing_tags": ["tag1", "tag2"], "files": [ { "file_content_base64": "…II=", "filename": "image.png" } ], "cases": [ { "external_case_id": "case_1", "filenames": ["image.png"] } ] } res = api_controller.post('/api/v5/submissions', json_data, PayloadSupportedMediaType.APPLICATION_JSON) print(res, res.content) ``` ## Logging The library implements HyperscienceLogging class to log messages related to the library. To set a different logging level, you can use the function HyperscienceLogging.set_hyperscience_logging_level() and choose from the following list of logging levels: CRITICAL, FATAL, ERROR, WARNING, INFO, DEBUG. %package -n python3-hyperscience-saas-client Summary: hyperscience saas client library Provides: python-hyperscience-saas-client BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-hyperscience-saas-client # Hyperscience SaaS Client Library With the Hyperscience SaaS client library, you can authenticate to SaaS instances of Hyperscience and make API requests. ## Quickstart Guide ### 1. Install Hyperscience SaaS Client Library Install the Hyperscience SAAS Client Library from PyPI: ```shell pip install hyperscience-saas-client ``` To upgrade the package: ```shell pip install hyperscience-saas-client --upgrade ``` ### 2. Set Up API Credentials Retrieve your API credentials from your Hyperscience SaaS instance. To learn more, see API Access for SaaS Instances. ### 3. Configure Authentication Parameters To configure authentication, the ApiController uses a Configuration class. A configuration object contains: - Authentication domain ("auth_server”) - Hyperscience's domain to make the requests to ("hs_domain") - Timeout for requests in seconds (optional) ("request_timeout") By default, these values are used: ```json { "auth_server": "login.hyperscience.net", "hs_domain": "cloud.hyperscience.net", "request_timeout": 120 } ``` You can set your Configuration object in one of the following three ways: #### Passing a JSON object ```python from hyperscience import Configuration config = '{ "auth_server": "login.hyperscience.net", "hs_domain": "cloud.hyperscience.net" }' configuration = Configuration.from_json_string(config) ``` #### Full path to a JSON file containing the configuration ```python from hyperscience import Configuration configuration = Configuration.from_file('/absolute/path/to/config.json') ``` #### Specifying the parameters ```python from hyperscience import Configuration configuration = Configuration(hs_domain='cloud.hyperscience.net') # or configuration = Configuration(hs_domain='cloud.hyperscience.net', auth_server='login.hyperscience.net') # or configuration = Configuration( hs_domain='cloud.hyperscience.net', auth_server='login.hyperscience.net', request_timeout=60 ) ``` ### 4. Provide Credentials There are two options for providing credentials: #### a. Environment Variables (Recommended) To use environment variables to store your credentials: 1. Put your client_id in an environment variable called HS_CLIENT_ID 2. Put the client_secret in an environment variable called HS_CLIENT_SECRET To load them and pass them to ApiController, you can do it with: ```python from hyperscience import EnvironmentCredentialsProvider, Configuration, ApiController credentials = EnvironmentCredentialsProvider() configuration = Configuration('') api_controller = ApiController(configuration, credentials) ``` #### b. Pass them via a CredentialsProvider object If you prefer having credentials loaded from a different place instead of environment variables, you can create an instance of the CredentialsProvider class and pass it to ApiController: ```python from hyperscience import CredentialsProvider, Configuration, ApiController credentials = CredentialsProvider('client_id', 'client_secret') configuration = Configuration('') api_controller = ApiController(configuration, credentials) ``` > **WARNING**: Keeping credentials in code is a bad practice. CredentialsProvider is best used when loading credentials from secret stores. ### 5. Make a Test Call Finally, ensure that your setup is correct by making a test call to GET submissions from your instance. ```python from hyperscience import ApiController, CredentialsProvider, Configuration credentials = CredentialsProvider('', '') configuration = Configuration('') api_controller = ApiController(configuration, credentials) response = api_controller.get('/api/v5/submissions') ``` ## Using the ApiController The ApiController allows users to interact with the Hyperscience API using easy-to-use wrapper methods. You can find Hyperscience’s API documentation here. ### Supported HTTP Methods **GET**, **POST** and **PUT** operations are supported by the ApiController.\ Content (query params, encoded url parameters or files input) is accepted in the form of Dict[str, str] or List[Tuple[str, str]].\ To support multiple parameters of the same type (e.g. 'file' for submitting multiple files), parameters should be passed as List[Tuple[str, str]]. #### Examples ##### Configuration and Setup ```python from hyperscience import ApiController, Configuration from hyperscience.api import DataSupportedMediaType, PayloadSupportedMediaType # Create an ApiController instance api_controller = ApiController(Configuration('cloud.hyperscience.net')) ``` #### GET Submissions ```python # GET request with query params provided in dictionary query_params = {'state': 'complete'} res = api_controller.get('/api/v5/submissions', query_params) print(res, res.content) # GET request with query params provided in List[Tuple] format query_params = [('state', 'complete')] res = api_controller.get('/api/v5/submissions', query_params) print(res, res.content) ``` #### POST a New Submission using URL-Encoded Form. ```python # POST request with WwwFormUrlEncoded content-type to submit files from remote servers # with List[Tuple] (multiple identical keys, e.g. multiple files) data = [ ('file', 'https://www.dropbox.com/demo-long.pdf'), ( 'file', 's3://hyperscience/bucket/form1.pdf', ), ('machine_only', True), ] res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) # POST request to submit files from remote servers with a dictionary (unique keys) data = { 'file': 'https://www.dropbox.com/demo-long.pdf', 'machine_only': True, } res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) # POST request to submit files from remote servers with a dictionary (unique keys) data = { 'file': 'https://www.dropbox.com/demo-long.pdf', 'machine_only': True, } res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) ``` #### POST a New Submission Using MultipartFormData ```python # POST request with MultipartFormData content-type to upload files from local filesystem with dictionary (unique keys) data = {'file': '/absolute/path/to/file.pdf', 'machine_only': True} res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.MULTIPART_FORM_DATA) print(res, res.content) # POST request with MultipartFormData content-type to upload files from local filesystem with List[Tuple] (multiple identical keys, e.g. multiple files) data = [ ('file', '/absolute/path/to/file.pdf'), ('file', '/absolute/path/to/file2.pdf'), ('machine_only', True), ] res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.MULTIPART_FORM_DATA) print(res, res.content) ``` #### POST a New Submission Using JSON POST request with ApplicationJson content-type to submit base 64 encoded files using a dictionary ```python json_data = { "metadata": {}, "machine_only": True, "goal_duration_minutes": 5, "single_document_per_page": True, "restrictions": [], "source_routing_tags": ["tag1", "tag2"], "files": [ { "file_content_base64": "…II=", "filename": "image.png" } ], "cases": [ { "external_case_id": "case_1", "filenames": ["image.png"] } ] } res = api_controller.post('/api/v5/submissions', json_data, PayloadSupportedMediaType.APPLICATION_JSON) print(res, res.content) ``` ## Logging The library implements HyperscienceLogging class to log messages related to the library. To set a different logging level, you can use the function HyperscienceLogging.set_hyperscience_logging_level() and choose from the following list of logging levels: CRITICAL, FATAL, ERROR, WARNING, INFO, DEBUG. %package help Summary: Development documents and examples for hyperscience-saas-client Provides: python3-hyperscience-saas-client-doc %description help # Hyperscience SaaS Client Library With the Hyperscience SaaS client library, you can authenticate to SaaS instances of Hyperscience and make API requests. ## Quickstart Guide ### 1. Install Hyperscience SaaS Client Library Install the Hyperscience SAAS Client Library from PyPI: ```shell pip install hyperscience-saas-client ``` To upgrade the package: ```shell pip install hyperscience-saas-client --upgrade ``` ### 2. Set Up API Credentials Retrieve your API credentials from your Hyperscience SaaS instance. To learn more, see API Access for SaaS Instances. ### 3. Configure Authentication Parameters To configure authentication, the ApiController uses a Configuration class. A configuration object contains: - Authentication domain ("auth_server”) - Hyperscience's domain to make the requests to ("hs_domain") - Timeout for requests in seconds (optional) ("request_timeout") By default, these values are used: ```json { "auth_server": "login.hyperscience.net", "hs_domain": "cloud.hyperscience.net", "request_timeout": 120 } ``` You can set your Configuration object in one of the following three ways: #### Passing a JSON object ```python from hyperscience import Configuration config = '{ "auth_server": "login.hyperscience.net", "hs_domain": "cloud.hyperscience.net" }' configuration = Configuration.from_json_string(config) ``` #### Full path to a JSON file containing the configuration ```python from hyperscience import Configuration configuration = Configuration.from_file('/absolute/path/to/config.json') ``` #### Specifying the parameters ```python from hyperscience import Configuration configuration = Configuration(hs_domain='cloud.hyperscience.net') # or configuration = Configuration(hs_domain='cloud.hyperscience.net', auth_server='login.hyperscience.net') # or configuration = Configuration( hs_domain='cloud.hyperscience.net', auth_server='login.hyperscience.net', request_timeout=60 ) ``` ### 4. Provide Credentials There are two options for providing credentials: #### a. Environment Variables (Recommended) To use environment variables to store your credentials: 1. Put your client_id in an environment variable called HS_CLIENT_ID 2. Put the client_secret in an environment variable called HS_CLIENT_SECRET To load them and pass them to ApiController, you can do it with: ```python from hyperscience import EnvironmentCredentialsProvider, Configuration, ApiController credentials = EnvironmentCredentialsProvider() configuration = Configuration('') api_controller = ApiController(configuration, credentials) ``` #### b. Pass them via a CredentialsProvider object If you prefer having credentials loaded from a different place instead of environment variables, you can create an instance of the CredentialsProvider class and pass it to ApiController: ```python from hyperscience import CredentialsProvider, Configuration, ApiController credentials = CredentialsProvider('client_id', 'client_secret') configuration = Configuration('') api_controller = ApiController(configuration, credentials) ``` > **WARNING**: Keeping credentials in code is a bad practice. CredentialsProvider is best used when loading credentials from secret stores. ### 5. Make a Test Call Finally, ensure that your setup is correct by making a test call to GET submissions from your instance. ```python from hyperscience import ApiController, CredentialsProvider, Configuration credentials = CredentialsProvider('', '') configuration = Configuration('') api_controller = ApiController(configuration, credentials) response = api_controller.get('/api/v5/submissions') ``` ## Using the ApiController The ApiController allows users to interact with the Hyperscience API using easy-to-use wrapper methods. You can find Hyperscience’s API documentation here. ### Supported HTTP Methods **GET**, **POST** and **PUT** operations are supported by the ApiController.\ Content (query params, encoded url parameters or files input) is accepted in the form of Dict[str, str] or List[Tuple[str, str]].\ To support multiple parameters of the same type (e.g. 'file' for submitting multiple files), parameters should be passed as List[Tuple[str, str]]. #### Examples ##### Configuration and Setup ```python from hyperscience import ApiController, Configuration from hyperscience.api import DataSupportedMediaType, PayloadSupportedMediaType # Create an ApiController instance api_controller = ApiController(Configuration('cloud.hyperscience.net')) ``` #### GET Submissions ```python # GET request with query params provided in dictionary query_params = {'state': 'complete'} res = api_controller.get('/api/v5/submissions', query_params) print(res, res.content) # GET request with query params provided in List[Tuple] format query_params = [('state', 'complete')] res = api_controller.get('/api/v5/submissions', query_params) print(res, res.content) ``` #### POST a New Submission using URL-Encoded Form. ```python # POST request with WwwFormUrlEncoded content-type to submit files from remote servers # with List[Tuple] (multiple identical keys, e.g. multiple files) data = [ ('file', 'https://www.dropbox.com/demo-long.pdf'), ( 'file', 's3://hyperscience/bucket/form1.pdf', ), ('machine_only', True), ] res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) # POST request to submit files from remote servers with a dictionary (unique keys) data = { 'file': 'https://www.dropbox.com/demo-long.pdf', 'machine_only': True, } res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) # POST request to submit files from remote servers with a dictionary (unique keys) data = { 'file': 'https://www.dropbox.com/demo-long.pdf', 'machine_only': True, } res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.FORM_URL_ENCODED) print(res, res.content) ``` #### POST a New Submission Using MultipartFormData ```python # POST request with MultipartFormData content-type to upload files from local filesystem with dictionary (unique keys) data = {'file': '/absolute/path/to/file.pdf', 'machine_only': True} res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.MULTIPART_FORM_DATA) print(res, res.content) # POST request with MultipartFormData content-type to upload files from local filesystem with List[Tuple] (multiple identical keys, e.g. multiple files) data = [ ('file', '/absolute/path/to/file.pdf'), ('file', '/absolute/path/to/file2.pdf'), ('machine_only', True), ] res = api_controller.post('/api/v5/submissions', data, DataSupportedMediaType.MULTIPART_FORM_DATA) print(res, res.content) ``` #### POST a New Submission Using JSON POST request with ApplicationJson content-type to submit base 64 encoded files using a dictionary ```python json_data = { "metadata": {}, "machine_only": True, "goal_duration_minutes": 5, "single_document_per_page": True, "restrictions": [], "source_routing_tags": ["tag1", "tag2"], "files": [ { "file_content_base64": "…II=", "filename": "image.png" } ], "cases": [ { "external_case_id": "case_1", "filenames": ["image.png"] } ] } res = api_controller.post('/api/v5/submissions', json_data, PayloadSupportedMediaType.APPLICATION_JSON) print(res, res.content) ``` ## Logging The library implements HyperscienceLogging class to log messages related to the library. To set a different logging level, you can use the function HyperscienceLogging.set_hyperscience_logging_level() and choose from the following list of logging levels: CRITICAL, FATAL, ERROR, WARNING, INFO, DEBUG. %prep %autosetup -n hyperscience-saas-client-1.0.9 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-hyperscience-saas-client -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 25 2023 Python_Bot - 1.0.9-1 - Package Spec generated