%global _empty_manifest_terminate_build 0 Name: python-torch-complex Version: 0.4.3 Release: 1 Summary: A fugacious python class for PyTorch-ComplexTensor License: Apache Software License URL: https://github.com/kamo-naoyuki/torch_complex Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1d/fe/638980e57d68dd79fa94d7db43598b2c2bceb74a3715774d854476c556d1/torch_complex-0.4.3.tar.gz BuildArch: noarch Requires: python3-numpy %description # pytorch_complex [![PyPI version](https://badge.fury.io/py/torch-complex.svg)](https://badge.fury.io/py/torch-complex) [![Python Versions](https://img.shields.io/pypi/pyversions/torch-complex.svg)](https://pypi.org/project/torch-complex/) [![Downloads](https://pepy.tech/badge/torch-complex)](https://pepy.tech/project/torch-complex) [![Build Status](https://travis-ci.org/kamo-naoyuki/pytorch_complex.svg?branch=master)](https://travis-ci.org/kamo-naoyuki/pytorch_complex) [![codecov](https://codecov.io/gh/kamo-naoyuki/pytorch_complex/branch/master/graph/badge.svg)](https://codecov.io/gh/kamo-naoyuki/pytorch_complex) A temporal python class for PyTorch-ComplexTensor ## What is this? A Python class to perform as `ComplexTensor` in PyTorch: Nothing except for the following, ```python class ComplexTensor: def __init__(self, ...): self.real = torch.Tensor(...) self.imag = torch.Tensor(...) ``` ### Why? PyTorch is great DNN Python library, except that it doesn't support `ComplexTensor` in Python level. https://github.com/pytorch/pytorch/issues/755 I'm looking forward to the completion, but I need `ComplexTensor` for now. I created this cheap module for the temporal replacement of it. Thus, I'll throw away this project as soon as `ComplexTensor` is completely supported! ## Requirements ``` Python>=3.6 PyTorch>=1.0 ``` ## Install ``` pip install torch_complex ``` ## How to use ### Basic mathematical operation ```python import numpy as np from torch_complex.tensor import ComplexTensor real = np.random.randn(3, 10, 10) imag = np.random.randn(3, 10, 10) x = ComplexTensor(real, imag) x.numpy() x + x x * x x - x x / x x ** 1.5 x @ x # Batch-matmul x.conj() x.inverse() # Batch-inverse ``` All are implemented with combinations of computation of `RealTensor` in python level, thus the speed is not good enough. ### Functional ```python import torch_complex.functional as F F.cat([x, x]) F.stack([x, x]) F.matmul(x, x) # Same as x @ x F.einsum('bij,bjk,bkl->bil', [x, x, x]) ``` ### For DNN Almost all methods that `torch.Tensor` has are implemented. ```python x.cuda() x.cpu() (x + x).sum().backward() ``` %package -n python3-torch-complex Summary: A fugacious python class for PyTorch-ComplexTensor Provides: python-torch-complex BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-torch-complex # pytorch_complex [![PyPI version](https://badge.fury.io/py/torch-complex.svg)](https://badge.fury.io/py/torch-complex) [![Python Versions](https://img.shields.io/pypi/pyversions/torch-complex.svg)](https://pypi.org/project/torch-complex/) [![Downloads](https://pepy.tech/badge/torch-complex)](https://pepy.tech/project/torch-complex) [![Build Status](https://travis-ci.org/kamo-naoyuki/pytorch_complex.svg?branch=master)](https://travis-ci.org/kamo-naoyuki/pytorch_complex) [![codecov](https://codecov.io/gh/kamo-naoyuki/pytorch_complex/branch/master/graph/badge.svg)](https://codecov.io/gh/kamo-naoyuki/pytorch_complex) A temporal python class for PyTorch-ComplexTensor ## What is this? A Python class to perform as `ComplexTensor` in PyTorch: Nothing except for the following, ```python class ComplexTensor: def __init__(self, ...): self.real = torch.Tensor(...) self.imag = torch.Tensor(...) ``` ### Why? PyTorch is great DNN Python library, except that it doesn't support `ComplexTensor` in Python level. https://github.com/pytorch/pytorch/issues/755 I'm looking forward to the completion, but I need `ComplexTensor` for now. I created this cheap module for the temporal replacement of it. Thus, I'll throw away this project as soon as `ComplexTensor` is completely supported! ## Requirements ``` Python>=3.6 PyTorch>=1.0 ``` ## Install ``` pip install torch_complex ``` ## How to use ### Basic mathematical operation ```python import numpy as np from torch_complex.tensor import ComplexTensor real = np.random.randn(3, 10, 10) imag = np.random.randn(3, 10, 10) x = ComplexTensor(real, imag) x.numpy() x + x x * x x - x x / x x ** 1.5 x @ x # Batch-matmul x.conj() x.inverse() # Batch-inverse ``` All are implemented with combinations of computation of `RealTensor` in python level, thus the speed is not good enough. ### Functional ```python import torch_complex.functional as F F.cat([x, x]) F.stack([x, x]) F.matmul(x, x) # Same as x @ x F.einsum('bij,bjk,bkl->bil', [x, x, x]) ``` ### For DNN Almost all methods that `torch.Tensor` has are implemented. ```python x.cuda() x.cpu() (x + x).sum().backward() ``` %package help Summary: Development documents and examples for torch-complex Provides: python3-torch-complex-doc %description help # pytorch_complex [![PyPI version](https://badge.fury.io/py/torch-complex.svg)](https://badge.fury.io/py/torch-complex) [![Python Versions](https://img.shields.io/pypi/pyversions/torch-complex.svg)](https://pypi.org/project/torch-complex/) [![Downloads](https://pepy.tech/badge/torch-complex)](https://pepy.tech/project/torch-complex) [![Build Status](https://travis-ci.org/kamo-naoyuki/pytorch_complex.svg?branch=master)](https://travis-ci.org/kamo-naoyuki/pytorch_complex) [![codecov](https://codecov.io/gh/kamo-naoyuki/pytorch_complex/branch/master/graph/badge.svg)](https://codecov.io/gh/kamo-naoyuki/pytorch_complex) A temporal python class for PyTorch-ComplexTensor ## What is this? A Python class to perform as `ComplexTensor` in PyTorch: Nothing except for the following, ```python class ComplexTensor: def __init__(self, ...): self.real = torch.Tensor(...) self.imag = torch.Tensor(...) ``` ### Why? PyTorch is great DNN Python library, except that it doesn't support `ComplexTensor` in Python level. https://github.com/pytorch/pytorch/issues/755 I'm looking forward to the completion, but I need `ComplexTensor` for now. I created this cheap module for the temporal replacement of it. Thus, I'll throw away this project as soon as `ComplexTensor` is completely supported! ## Requirements ``` Python>=3.6 PyTorch>=1.0 ``` ## Install ``` pip install torch_complex ``` ## How to use ### Basic mathematical operation ```python import numpy as np from torch_complex.tensor import ComplexTensor real = np.random.randn(3, 10, 10) imag = np.random.randn(3, 10, 10) x = ComplexTensor(real, imag) x.numpy() x + x x * x x - x x / x x ** 1.5 x @ x # Batch-matmul x.conj() x.inverse() # Batch-inverse ``` All are implemented with combinations of computation of `RealTensor` in python level, thus the speed is not good enough. ### Functional ```python import torch_complex.functional as F F.cat([x, x]) F.stack([x, x]) F.matmul(x, x) # Same as x @ x F.einsum('bij,bjk,bkl->bil', [x, x, x]) ``` ### For DNN Almost all methods that `torch.Tensor` has are implemented. ```python x.cuda() x.cpu() (x + x).sum().backward() ``` %prep %autosetup -n torch-complex-0.4.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-torch-complex -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 25 2023 Python_Bot - 0.4.3-1 - Package Spec generated