%global _empty_manifest_terminate_build 0 Name: python-rusenttokenize Version: 0.0.5 Release: 1 Summary: Rule-based sentence tokenizer for Russian language License: Apache Software License URL: https://github.com/deepmipt/ru_sentence_tokenizer Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6d/76/1226e1ddc11ad492a191664a4926c607bcbf1e5b352134ca6f83c4af8205/rusenttokenize-0.0.5.tar.gz BuildArch: noarch %description # ru_sent_tokenize A simple and fast rule-based sentence segmentation. Tested on OpenCorpora and SynTagRus datasets. # Installation ``` pip install rusenttokenize ``` # Running ```ipython >>> from rusenttokenize import ru_sent_tokenize >>> ru_sent_tokenize('Эта шоколадка за 400р. ничего из себя не представляла. Артём решил больше не ходить в этот магазин') ['Эта шоколадка за 400р. ничего из себя не представляла.', 'Артём решил больше не ходить в этот магазин'] ``` # Metrics The tokenizer has been tested on OpenCorpora and SynTagRus. There are two important metrics. Precision. First one is we took single sentences from the datasets and measured how many times tokenizer didn't split them. Recall. Second metric is we took two consecutive sentences from the datasets and joined each pair with a space characted. We measured how many times tokenizer correctly splitted a long sentence into two.
tokenizer OpenCorpora SynTagRus
Precision Recall Execution Time (sec) Precision Recall Execution Time (sec)
nltk.sent_tokenize 94.30 86.06 8.67 98.15 94.95 5.07
nltk.sent_tokenize(x, language='russian') 95.53 88.37 8.54 98.44 95.45 5.68
bureaucratic-labs.segmentator.split 97.16 88.62 359 96.79 92.55 210
ru_sent_tokenize 98.73 93.45 4.92 99.81 98.59 2.87
[Notebook](https://github.com/deepmipt/ru_sentence_tokenizer/blob/master/metrics/calculate.ipynb) shows how the table above was calculated %package -n python3-rusenttokenize Summary: Rule-based sentence tokenizer for Russian language Provides: python-rusenttokenize BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-rusenttokenize # ru_sent_tokenize A simple and fast rule-based sentence segmentation. Tested on OpenCorpora and SynTagRus datasets. # Installation ``` pip install rusenttokenize ``` # Running ```ipython >>> from rusenttokenize import ru_sent_tokenize >>> ru_sent_tokenize('Эта шоколадка за 400р. ничего из себя не представляла. Артём решил больше не ходить в этот магазин') ['Эта шоколадка за 400р. ничего из себя не представляла.', 'Артём решил больше не ходить в этот магазин'] ``` # Metrics The tokenizer has been tested on OpenCorpora and SynTagRus. There are two important metrics. Precision. First one is we took single sentences from the datasets and measured how many times tokenizer didn't split them. Recall. Second metric is we took two consecutive sentences from the datasets and joined each pair with a space characted. We measured how many times tokenizer correctly splitted a long sentence into two.
tokenizer OpenCorpora SynTagRus
Precision Recall Execution Time (sec) Precision Recall Execution Time (sec)
nltk.sent_tokenize 94.30 86.06 8.67 98.15 94.95 5.07
nltk.sent_tokenize(x, language='russian') 95.53 88.37 8.54 98.44 95.45 5.68
bureaucratic-labs.segmentator.split 97.16 88.62 359 96.79 92.55 210
ru_sent_tokenize 98.73 93.45 4.92 99.81 98.59 2.87
[Notebook](https://github.com/deepmipt/ru_sentence_tokenizer/blob/master/metrics/calculate.ipynb) shows how the table above was calculated %package help Summary: Development documents and examples for rusenttokenize Provides: python3-rusenttokenize-doc %description help # ru_sent_tokenize A simple and fast rule-based sentence segmentation. Tested on OpenCorpora and SynTagRus datasets. # Installation ``` pip install rusenttokenize ``` # Running ```ipython >>> from rusenttokenize import ru_sent_tokenize >>> ru_sent_tokenize('Эта шоколадка за 400р. ничего из себя не представляла. Артём решил больше не ходить в этот магазин') ['Эта шоколадка за 400р. ничего из себя не представляла.', 'Артём решил больше не ходить в этот магазин'] ``` # Metrics The tokenizer has been tested on OpenCorpora and SynTagRus. There are two important metrics. Precision. First one is we took single sentences from the datasets and measured how many times tokenizer didn't split them. Recall. Second metric is we took two consecutive sentences from the datasets and joined each pair with a space characted. We measured how many times tokenizer correctly splitted a long sentence into two.
tokenizer OpenCorpora SynTagRus
Precision Recall Execution Time (sec) Precision Recall Execution Time (sec)
nltk.sent_tokenize 94.30 86.06 8.67 98.15 94.95 5.07
nltk.sent_tokenize(x, language='russian') 95.53 88.37 8.54 98.44 95.45 5.68
bureaucratic-labs.segmentator.split 97.16 88.62 359 96.79 92.55 210
ru_sent_tokenize 98.73 93.45 4.92 99.81 98.59 2.87
[Notebook](https://github.com/deepmipt/ru_sentence_tokenizer/blob/master/metrics/calculate.ipynb) shows how the table above was calculated %prep %autosetup -n rusenttokenize-0.0.5 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-rusenttokenize -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.0.5-1 - Package Spec generated