%global _empty_manifest_terminate_build 0 Name: python-neurolab Version: 0.3.5 Release: 1 Summary: Simple and powerfull neural network library for python License: LGPL-3 URL: http://neurolab.googlecode.com Source0: https://mirrors.nju.edu.cn/pypi/web/packages/46/fd/47a9a39158b461b6b862d64c0ad7f679b08ed6d316744299f0db89066342/neurolab-0.3.5.tar.gz BuildArch: noarch %description Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework to create and explore other neural network types. :Features: - Pure python + numpy - API like Neural Network Toolbox (NNT) from MATLAB - Interface to use train algorithms form scipy.optimize - Flexible network configurations and learning algorithms. You may change: train, error, initialization and activation functions - Unlimited number of neural layers and number of neurons in layers - Variety of supported types of Artificial Neural Network and learning algorithms :Example: >>> import numpy as np >>> import neurolab as nl >>> # Create train samples >>> input = np.random.uniform(-0.5, 0.5, (10, 2)) >>> target = (input[:, 0] + input[:, 1]).reshape(10, 1) >>> # Create network with 2 inputs, 5 neurons in input layer and 1 in output layer >>> net = nl.net.newff([[-0.5, 0.5], [-0.5, 0.5]], [5, 1]) >>> # Train process >>> err = net.train(input, target, show=15) Epoch: 15; Error: 0.150308402918; Epoch: 30; Error: 0.072265865089; Epoch: 45; Error: 0.016931355131; The goal of learning is reached >>> # Test >>> net.sim([[0.2, 0.1]]) # 0.2 + 0.1 array([[ 0.28757596]]) :Links: - `Home Page `_ - `PyPI Page `_ - `Documentation `_ - `Examples `_ %package -n python3-neurolab Summary: Simple and powerfull neural network library for python Provides: python-neurolab BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework to create and explore other neural network types. :Features: - Pure python + numpy - API like Neural Network Toolbox (NNT) from MATLAB - Interface to use train algorithms form scipy.optimize - Flexible network configurations and learning algorithms. You may change: train, error, initialization and activation functions - Unlimited number of neural layers and number of neurons in layers - Variety of supported types of Artificial Neural Network and learning algorithms :Example: >>> import numpy as np >>> import neurolab as nl >>> # Create train samples >>> input = np.random.uniform(-0.5, 0.5, (10, 2)) >>> target = (input[:, 0] + input[:, 1]).reshape(10, 1) >>> # Create network with 2 inputs, 5 neurons in input layer and 1 in output layer >>> net = nl.net.newff([[-0.5, 0.5], [-0.5, 0.5]], [5, 1]) >>> # Train process >>> err = net.train(input, target, show=15) Epoch: 15; Error: 0.150308402918; Epoch: 30; Error: 0.072265865089; Epoch: 45; Error: 0.016931355131; The goal of learning is reached >>> # Test >>> net.sim([[0.2, 0.1]]) # 0.2 + 0.1 array([[ 0.28757596]]) :Links: - `Home Page `_ - `PyPI Page `_ - `Documentation `_ - `Examples `_ %package help Summary: Development documents and examples for neurolab Provides: python3-neurolab-doc %description help Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework to create and explore other neural network types. :Features: - Pure python + numpy - API like Neural Network Toolbox (NNT) from MATLAB - Interface to use train algorithms form scipy.optimize - Flexible network configurations and learning algorithms. You may change: train, error, initialization and activation functions - Unlimited number of neural layers and number of neurons in layers - Variety of supported types of Artificial Neural Network and learning algorithms :Example: >>> import numpy as np >>> import neurolab as nl >>> # Create train samples >>> input = np.random.uniform(-0.5, 0.5, (10, 2)) >>> target = (input[:, 0] + input[:, 1]).reshape(10, 1) >>> # Create network with 2 inputs, 5 neurons in input layer and 1 in output layer >>> net = nl.net.newff([[-0.5, 0.5], [-0.5, 0.5]], [5, 1]) >>> # Train process >>> err = net.train(input, target, show=15) Epoch: 15; Error: 0.150308402918; Epoch: 30; Error: 0.072265865089; Epoch: 45; Error: 0.016931355131; The goal of learning is reached >>> # Test >>> net.sim([[0.2, 0.1]]) # 0.2 + 0.1 array([[ 0.28757596]]) :Links: - `Home Page `_ - `PyPI Page `_ - `Documentation `_ - `Examples `_ %prep %autosetup -n neurolab-0.3.5 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-neurolab -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.3.5-1 - Package Spec generated