%global _empty_manifest_terminate_build 0 Name: python-wkcuber Version: 0.12.3 Release: 1 Summary: Python package to create, cube, and work with WEBKNOSSOS WKW datasets License: AGPL-3.0 URL: https://docs.webknossos.org/wkcuber Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d4/9b/f0a3f675c2ca2de2938150875540e8b79fadc771aea608e81a8d9787758a/wkcuber-0.12.3.tar.gz BuildArch: noarch Requires: python3-attrs Requires: python3-cattrs Requires: python3-cluster_tools Requires: python3-czifile Requires: python3-GitPython Requires: python3-imagecodecs Requires: python3-natsort Requires: python3-nibabel Requires: python3-numpy Requires: python3-pillow Requires: python3-requests Requires: python3-scikit-image Requires: python3-scikit-learn Requires: python3-scipy Requires: python3-tifffile Requires: python3-webknossos Requires: python3-wkw Requires: python3-zarr Requires: python3-universal-pathlib %description # WEBKNOSSOS cuber (wkcuber) [![PyPI version](https://img.shields.io/pypi/v/wkcuber)](https://pypi.python.org/pypi/wkcuber) [![Supported Python Versions](https://img.shields.io/pypi/pyversions/wkcuber.svg)](https://pypi.python.org/pypi/wkcuber) [![Build Status](https://img.shields.io/github/actions/workflow/status/scalableminds/webknossos-libs/.github/workflows/ci.yml?branch=master)](https://github.com/scalableminds/webknossos-libs/actions?query=workflow%3A%22CI%22) [![Documentation](https://img.shields.io/badge/docs-passing-brightgreen.svg)](https://docs.webknossos.org/wkcuber/index.html) [![Code Style](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) Python library for creating and working with [WEBKNOSSOS](https://webknossos.org) [WKW](https://github.com/scalableminds/webknossos-wrap) datasets. WKW is a container format for efficiently storing large, scale 3D image data as found in (electron) microscopy. The tools are modular components to allow easy integration into existing pipelines and workflows. ## Features * `wkcuber`: Convert supported input files to fully ready WKW datasets (includes type detection, downsampling, compressing and metadata generation) * `wkcuber.convert_image_stack_to_wkw`: Convert image stacks to fully ready WKW datasets (includes downsampling, compressing and metadata generation) * `wkcuber.export_wkw_as_tiff`: Convert WKW datasets to a tiff stack (writing as tiles to a `z/y/x.tiff` folder structure is also supported) * `wkcuber.cubing`: Convert image stacks (e.g., `tiff`, `jpg`, `png`, `bmp`, `dm3`, `dm4`) to WKW cubes * `wkcuber.tile_cubing`: Convert tiled image stacks (e.g. in `z/y/x.ext` folder structure) to WKW cubes * `wkcuber.convert_knossos`: Convert KNOSSOS cubes to WKW cubes * `wkcuber.convert_nifti`: Convert NIFTI files to WKW files (Currently without applying transformations). * `wkcuber.convert_raw`: Convert RAW binary data (.raw, .vol) files to WKW datasets * `wkcuber.downsampling`: Create downsampled magnifications (with `median`, `mode` and linear interpolation modes). Downsampling compresses the new magnifications by default (disable via `--no_compress`). * `wkcuber.compress`: Compress WKW cubes for efficient file storage (especially useful for segmentation data) * `wkcuber.metadata`: Create (or refresh) metadata (with guessing of most parameters) * `wkcuber.recubing`: Read existing WKW cubes in and write them again specifying the WKW file length. Useful when dataset was written e.g. with file length 1. * `wkcuber.check_equality`: Compare two WKW datasets to check whether they are equal (e.g., after compressing a dataset, this task can be useful to double-check that the compressed dataset contains the same data). * Most modules support multiprocessing ## Supported input formats * Standard image formats, e.g. `tiff`, `jpg`, `png`, `bmp` * Proprietary image formats, e.g. `dm3` * Tiled image stacks (used for Catmaid) * KNOSSOS cubes * NIFTI files * Raw binary files ## Installation ### Python 3 with pip from PyPi - `wkcuber` requires at least Python 3.8 ```bash # Make sure to have lz4 installed: # Mac: brew install lz4 # Ubuntu/Debian: apt-get install liblz4-1 # CentOS/RHEL: yum install lz4 pip install wkcuber ``` ### Docker Use the CI-built image: [scalableminds/webknossos-cuber](https://hub.docker.com/r/scalableminds/webknossos-cuber/). Example usage `docker run -v :/data --rm scalableminds/webknossos-cuber wkcuber --layer_name color --scale 11.24,11.24,25 --name great_dataset /data/source/color /data/target`. ## Usage ```bash # Convert arbitrary, supported input files into wkw datasets. This sets reasonable defaults, but see other commands for customization. python -m wkcuber \ --scale 11.24,11.24,25 \ data/source data/target # Convert image stacks into wkw datasets python -m wkcuber.convert_image_stack_to_wkw \ --layer_name color \ --scale 11.24,11.24,25 \ --name great_dataset \ data/source/color data/target # Convert image files to wkw cubes python -m wkcuber.cubing --layer_name color data/source/color data/target python -m wkcuber.cubing --layer_name segmentation data/source/segmentation data/target # Convert tiled image files to wkw cubes python -m wkcuber.tile_cubing --layer_name color data/source data/target # Convert Knossos cubes to wkw cubes python -m wkcuber.convert_knossos --layer_name color data/source/mag1 data/target # Convert NIFTI file to wkw file python -m wkcuber.convert_nifti --layer_name color --scale 10,10,30 data/source/nifti_file data/target # Convert folder with NIFTI files to wkw files python -m wkcuber.convert_nifti --color_file one_nifti_file --segmentation_file --scale 10,10,30 another_nifti data/source/ data/target # Convert RAW file to wkw file python -m wkcuber.convert_raw --layer_name color --scale 10,10,30 --input_dtype uint8 --shape 2048,2048,1024 data/source/raw_file.raw data/target # Create downsampled magnifications python -m wkcuber.downsampling --layer_name color data/target python -m wkcuber.downsampling --layer_name segmentation --interpolation_mode mode data/target # Compress data in-place (mostly useful for segmentation) python -m wkcuber.compress --layer_name segmentation data/target # Compress data copy (mostly useful for segmentation) python -m wkcuber.compress --layer_name segmentation data/target data/target_compress # Create metadata python -m wkcuber.metadata --name great_dataset --scale 11.24,11.24,25 data/target # Refresh metadata so that new layers and/or magnifications are picked up python -m wkcuber.metadata --refresh data/target # Recubing an existing dataset python -m wkcuber.recubing --layer_name color --dtype uint8 /data/source/wkw /data/target # Check two datasets for equality python -m wkcuber.check_equality /data/source /data/target ``` ### Parallelization Most tasks can be configured to be executed in a parallelized manner. Via `--distribution_strategy` you can pass `multiprocessing`, `slurm` or `kubernetes`. The first can be further configured with `--jobs` and the latter via `--job_resources='{"mem": "10M"}'`. Use `--help` to get more information. ### Zarr support Most conversion commands can be configured with `--data_format zarr`. This will produce a Zarr-based dataset instead of WKW. Zarr-based datasets can also be stored on remote storage (e.g. S3, GCS, HTTP). For that, storage-specific credentials and configurations need to be passed in as environment variables. #### Example S3 ```bash export AWS_SECRET_ACCESS_KEY="..." export AWS_ACCESS_KEY_ID="..." export AWS_REGION="..." python -m wkcuber \ --scale 11.24,11.24,25 \ --data_format zarr \ data/source s3://bucket/data/target ``` #### Example HTTPS ```bash export HTTP_BASIC_USER="..." export HTTP_BASIC_PASSWORD="..." python -m wkcuber \ --scale 11.24,11.24,25 \ --data_format zarr \ data/source https://example.org/data/target ``` Exchange `https://` with `webdav+https://` for WebDAV. ## Development Make sure to install all the required dependencies using Poetry: ```bash pip install poetry poetry install ``` Please, format, lint, and unit test your code changes before merging them. ```bash poetry run black . poetry run pylint -j4 wkcuber poetry run pytest tests ``` Please, run the extended test suite: ```bash tests/scripts/all_tests.sh ``` PyPi releases are automatically pushed when creating a new Git tag/Github release. ## API documentation Check out the [latest version of the API documentation](https://docs.webknossos.org/api/wkcuber.html). ### Generate the API documentation Run `docs/generate.sh` to open a server displaying the API docs. `docs/generate.sh --persist` persists the html to `docs/api`. ## Test Data Credits Excerpts for testing purposes have been sampled from: * Dow Jacobo Hossain Siletti Hudspeth (2018). **Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit.** eLife. [DOI:10.7554/eLife.33988](https://elifesciences.org/articles/33988) * Zheng Lauritzen Perlman Robinson Nichols Milkie Torrens Price Fisher Sharifi Calle-Schuler Kmecova Ali Karsh Trautman Bogovic Hanslovsky Jefferis Kazhdan Khairy Saalfeld Fetter Bock (2018). **A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster.** Cell. [DOI:10.1016/j.cell.2018.06.019](https://www.cell.com/cell/fulltext/S0092-8674(18)30787-6). License: [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) ## License AGPLv3 Copyright scalable minds %package -n python3-wkcuber Summary: Python package to create, cube, and work with WEBKNOSSOS WKW datasets Provides: python-wkcuber BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-wkcuber # WEBKNOSSOS cuber (wkcuber) [![PyPI version](https://img.shields.io/pypi/v/wkcuber)](https://pypi.python.org/pypi/wkcuber) [![Supported Python Versions](https://img.shields.io/pypi/pyversions/wkcuber.svg)](https://pypi.python.org/pypi/wkcuber) [![Build Status](https://img.shields.io/github/actions/workflow/status/scalableminds/webknossos-libs/.github/workflows/ci.yml?branch=master)](https://github.com/scalableminds/webknossos-libs/actions?query=workflow%3A%22CI%22) [![Documentation](https://img.shields.io/badge/docs-passing-brightgreen.svg)](https://docs.webknossos.org/wkcuber/index.html) [![Code Style](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) Python library for creating and working with [WEBKNOSSOS](https://webknossos.org) [WKW](https://github.com/scalableminds/webknossos-wrap) datasets. WKW is a container format for efficiently storing large, scale 3D image data as found in (electron) microscopy. The tools are modular components to allow easy integration into existing pipelines and workflows. ## Features * `wkcuber`: Convert supported input files to fully ready WKW datasets (includes type detection, downsampling, compressing and metadata generation) * `wkcuber.convert_image_stack_to_wkw`: Convert image stacks to fully ready WKW datasets (includes downsampling, compressing and metadata generation) * `wkcuber.export_wkw_as_tiff`: Convert WKW datasets to a tiff stack (writing as tiles to a `z/y/x.tiff` folder structure is also supported) * `wkcuber.cubing`: Convert image stacks (e.g., `tiff`, `jpg`, `png`, `bmp`, `dm3`, `dm4`) to WKW cubes * `wkcuber.tile_cubing`: Convert tiled image stacks (e.g. in `z/y/x.ext` folder structure) to WKW cubes * `wkcuber.convert_knossos`: Convert KNOSSOS cubes to WKW cubes * `wkcuber.convert_nifti`: Convert NIFTI files to WKW files (Currently without applying transformations). * `wkcuber.convert_raw`: Convert RAW binary data (.raw, .vol) files to WKW datasets * `wkcuber.downsampling`: Create downsampled magnifications (with `median`, `mode` and linear interpolation modes). Downsampling compresses the new magnifications by default (disable via `--no_compress`). * `wkcuber.compress`: Compress WKW cubes for efficient file storage (especially useful for segmentation data) * `wkcuber.metadata`: Create (or refresh) metadata (with guessing of most parameters) * `wkcuber.recubing`: Read existing WKW cubes in and write them again specifying the WKW file length. Useful when dataset was written e.g. with file length 1. * `wkcuber.check_equality`: Compare two WKW datasets to check whether they are equal (e.g., after compressing a dataset, this task can be useful to double-check that the compressed dataset contains the same data). * Most modules support multiprocessing ## Supported input formats * Standard image formats, e.g. `tiff`, `jpg`, `png`, `bmp` * Proprietary image formats, e.g. `dm3` * Tiled image stacks (used for Catmaid) * KNOSSOS cubes * NIFTI files * Raw binary files ## Installation ### Python 3 with pip from PyPi - `wkcuber` requires at least Python 3.8 ```bash # Make sure to have lz4 installed: # Mac: brew install lz4 # Ubuntu/Debian: apt-get install liblz4-1 # CentOS/RHEL: yum install lz4 pip install wkcuber ``` ### Docker Use the CI-built image: [scalableminds/webknossos-cuber](https://hub.docker.com/r/scalableminds/webknossos-cuber/). Example usage `docker run -v :/data --rm scalableminds/webknossos-cuber wkcuber --layer_name color --scale 11.24,11.24,25 --name great_dataset /data/source/color /data/target`. ## Usage ```bash # Convert arbitrary, supported input files into wkw datasets. This sets reasonable defaults, but see other commands for customization. python -m wkcuber \ --scale 11.24,11.24,25 \ data/source data/target # Convert image stacks into wkw datasets python -m wkcuber.convert_image_stack_to_wkw \ --layer_name color \ --scale 11.24,11.24,25 \ --name great_dataset \ data/source/color data/target # Convert image files to wkw cubes python -m wkcuber.cubing --layer_name color data/source/color data/target python -m wkcuber.cubing --layer_name segmentation data/source/segmentation data/target # Convert tiled image files to wkw cubes python -m wkcuber.tile_cubing --layer_name color data/source data/target # Convert Knossos cubes to wkw cubes python -m wkcuber.convert_knossos --layer_name color data/source/mag1 data/target # Convert NIFTI file to wkw file python -m wkcuber.convert_nifti --layer_name color --scale 10,10,30 data/source/nifti_file data/target # Convert folder with NIFTI files to wkw files python -m wkcuber.convert_nifti --color_file one_nifti_file --segmentation_file --scale 10,10,30 another_nifti data/source/ data/target # Convert RAW file to wkw file python -m wkcuber.convert_raw --layer_name color --scale 10,10,30 --input_dtype uint8 --shape 2048,2048,1024 data/source/raw_file.raw data/target # Create downsampled magnifications python -m wkcuber.downsampling --layer_name color data/target python -m wkcuber.downsampling --layer_name segmentation --interpolation_mode mode data/target # Compress data in-place (mostly useful for segmentation) python -m wkcuber.compress --layer_name segmentation data/target # Compress data copy (mostly useful for segmentation) python -m wkcuber.compress --layer_name segmentation data/target data/target_compress # Create metadata python -m wkcuber.metadata --name great_dataset --scale 11.24,11.24,25 data/target # Refresh metadata so that new layers and/or magnifications are picked up python -m wkcuber.metadata --refresh data/target # Recubing an existing dataset python -m wkcuber.recubing --layer_name color --dtype uint8 /data/source/wkw /data/target # Check two datasets for equality python -m wkcuber.check_equality /data/source /data/target ``` ### Parallelization Most tasks can be configured to be executed in a parallelized manner. Via `--distribution_strategy` you can pass `multiprocessing`, `slurm` or `kubernetes`. The first can be further configured with `--jobs` and the latter via `--job_resources='{"mem": "10M"}'`. Use `--help` to get more information. ### Zarr support Most conversion commands can be configured with `--data_format zarr`. This will produce a Zarr-based dataset instead of WKW. Zarr-based datasets can also be stored on remote storage (e.g. S3, GCS, HTTP). For that, storage-specific credentials and configurations need to be passed in as environment variables. #### Example S3 ```bash export AWS_SECRET_ACCESS_KEY="..." export AWS_ACCESS_KEY_ID="..." export AWS_REGION="..." python -m wkcuber \ --scale 11.24,11.24,25 \ --data_format zarr \ data/source s3://bucket/data/target ``` #### Example HTTPS ```bash export HTTP_BASIC_USER="..." export HTTP_BASIC_PASSWORD="..." python -m wkcuber \ --scale 11.24,11.24,25 \ --data_format zarr \ data/source https://example.org/data/target ``` Exchange `https://` with `webdav+https://` for WebDAV. ## Development Make sure to install all the required dependencies using Poetry: ```bash pip install poetry poetry install ``` Please, format, lint, and unit test your code changes before merging them. ```bash poetry run black . poetry run pylint -j4 wkcuber poetry run pytest tests ``` Please, run the extended test suite: ```bash tests/scripts/all_tests.sh ``` PyPi releases are automatically pushed when creating a new Git tag/Github release. ## API documentation Check out the [latest version of the API documentation](https://docs.webknossos.org/api/wkcuber.html). ### Generate the API documentation Run `docs/generate.sh` to open a server displaying the API docs. `docs/generate.sh --persist` persists the html to `docs/api`. ## Test Data Credits Excerpts for testing purposes have been sampled from: * Dow Jacobo Hossain Siletti Hudspeth (2018). **Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit.** eLife. [DOI:10.7554/eLife.33988](https://elifesciences.org/articles/33988) * Zheng Lauritzen Perlman Robinson Nichols Milkie Torrens Price Fisher Sharifi Calle-Schuler Kmecova Ali Karsh Trautman Bogovic Hanslovsky Jefferis Kazhdan Khairy Saalfeld Fetter Bock (2018). **A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster.** Cell. [DOI:10.1016/j.cell.2018.06.019](https://www.cell.com/cell/fulltext/S0092-8674(18)30787-6). License: [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) ## License AGPLv3 Copyright scalable minds %package help Summary: Development documents and examples for wkcuber Provides: python3-wkcuber-doc %description help # WEBKNOSSOS cuber (wkcuber) [![PyPI version](https://img.shields.io/pypi/v/wkcuber)](https://pypi.python.org/pypi/wkcuber) [![Supported Python Versions](https://img.shields.io/pypi/pyversions/wkcuber.svg)](https://pypi.python.org/pypi/wkcuber) [![Build Status](https://img.shields.io/github/actions/workflow/status/scalableminds/webknossos-libs/.github/workflows/ci.yml?branch=master)](https://github.com/scalableminds/webknossos-libs/actions?query=workflow%3A%22CI%22) [![Documentation](https://img.shields.io/badge/docs-passing-brightgreen.svg)](https://docs.webknossos.org/wkcuber/index.html) [![Code Style](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) Python library for creating and working with [WEBKNOSSOS](https://webknossos.org) [WKW](https://github.com/scalableminds/webknossos-wrap) datasets. WKW is a container format for efficiently storing large, scale 3D image data as found in (electron) microscopy. The tools are modular components to allow easy integration into existing pipelines and workflows. ## Features * `wkcuber`: Convert supported input files to fully ready WKW datasets (includes type detection, downsampling, compressing and metadata generation) * `wkcuber.convert_image_stack_to_wkw`: Convert image stacks to fully ready WKW datasets (includes downsampling, compressing and metadata generation) * `wkcuber.export_wkw_as_tiff`: Convert WKW datasets to a tiff stack (writing as tiles to a `z/y/x.tiff` folder structure is also supported) * `wkcuber.cubing`: Convert image stacks (e.g., `tiff`, `jpg`, `png`, `bmp`, `dm3`, `dm4`) to WKW cubes * `wkcuber.tile_cubing`: Convert tiled image stacks (e.g. in `z/y/x.ext` folder structure) to WKW cubes * `wkcuber.convert_knossos`: Convert KNOSSOS cubes to WKW cubes * `wkcuber.convert_nifti`: Convert NIFTI files to WKW files (Currently without applying transformations). * `wkcuber.convert_raw`: Convert RAW binary data (.raw, .vol) files to WKW datasets * `wkcuber.downsampling`: Create downsampled magnifications (with `median`, `mode` and linear interpolation modes). Downsampling compresses the new magnifications by default (disable via `--no_compress`). * `wkcuber.compress`: Compress WKW cubes for efficient file storage (especially useful for segmentation data) * `wkcuber.metadata`: Create (or refresh) metadata (with guessing of most parameters) * `wkcuber.recubing`: Read existing WKW cubes in and write them again specifying the WKW file length. Useful when dataset was written e.g. with file length 1. * `wkcuber.check_equality`: Compare two WKW datasets to check whether they are equal (e.g., after compressing a dataset, this task can be useful to double-check that the compressed dataset contains the same data). * Most modules support multiprocessing ## Supported input formats * Standard image formats, e.g. `tiff`, `jpg`, `png`, `bmp` * Proprietary image formats, e.g. `dm3` * Tiled image stacks (used for Catmaid) * KNOSSOS cubes * NIFTI files * Raw binary files ## Installation ### Python 3 with pip from PyPi - `wkcuber` requires at least Python 3.8 ```bash # Make sure to have lz4 installed: # Mac: brew install lz4 # Ubuntu/Debian: apt-get install liblz4-1 # CentOS/RHEL: yum install lz4 pip install wkcuber ``` ### Docker Use the CI-built image: [scalableminds/webknossos-cuber](https://hub.docker.com/r/scalableminds/webknossos-cuber/). Example usage `docker run -v :/data --rm scalableminds/webknossos-cuber wkcuber --layer_name color --scale 11.24,11.24,25 --name great_dataset /data/source/color /data/target`. ## Usage ```bash # Convert arbitrary, supported input files into wkw datasets. This sets reasonable defaults, but see other commands for customization. python -m wkcuber \ --scale 11.24,11.24,25 \ data/source data/target # Convert image stacks into wkw datasets python -m wkcuber.convert_image_stack_to_wkw \ --layer_name color \ --scale 11.24,11.24,25 \ --name great_dataset \ data/source/color data/target # Convert image files to wkw cubes python -m wkcuber.cubing --layer_name color data/source/color data/target python -m wkcuber.cubing --layer_name segmentation data/source/segmentation data/target # Convert tiled image files to wkw cubes python -m wkcuber.tile_cubing --layer_name color data/source data/target # Convert Knossos cubes to wkw cubes python -m wkcuber.convert_knossos --layer_name color data/source/mag1 data/target # Convert NIFTI file to wkw file python -m wkcuber.convert_nifti --layer_name color --scale 10,10,30 data/source/nifti_file data/target # Convert folder with NIFTI files to wkw files python -m wkcuber.convert_nifti --color_file one_nifti_file --segmentation_file --scale 10,10,30 another_nifti data/source/ data/target # Convert RAW file to wkw file python -m wkcuber.convert_raw --layer_name color --scale 10,10,30 --input_dtype uint8 --shape 2048,2048,1024 data/source/raw_file.raw data/target # Create downsampled magnifications python -m wkcuber.downsampling --layer_name color data/target python -m wkcuber.downsampling --layer_name segmentation --interpolation_mode mode data/target # Compress data in-place (mostly useful for segmentation) python -m wkcuber.compress --layer_name segmentation data/target # Compress data copy (mostly useful for segmentation) python -m wkcuber.compress --layer_name segmentation data/target data/target_compress # Create metadata python -m wkcuber.metadata --name great_dataset --scale 11.24,11.24,25 data/target # Refresh metadata so that new layers and/or magnifications are picked up python -m wkcuber.metadata --refresh data/target # Recubing an existing dataset python -m wkcuber.recubing --layer_name color --dtype uint8 /data/source/wkw /data/target # Check two datasets for equality python -m wkcuber.check_equality /data/source /data/target ``` ### Parallelization Most tasks can be configured to be executed in a parallelized manner. Via `--distribution_strategy` you can pass `multiprocessing`, `slurm` or `kubernetes`. The first can be further configured with `--jobs` and the latter via `--job_resources='{"mem": "10M"}'`. Use `--help` to get more information. ### Zarr support Most conversion commands can be configured with `--data_format zarr`. This will produce a Zarr-based dataset instead of WKW. Zarr-based datasets can also be stored on remote storage (e.g. S3, GCS, HTTP). For that, storage-specific credentials and configurations need to be passed in as environment variables. #### Example S3 ```bash export AWS_SECRET_ACCESS_KEY="..." export AWS_ACCESS_KEY_ID="..." export AWS_REGION="..." python -m wkcuber \ --scale 11.24,11.24,25 \ --data_format zarr \ data/source s3://bucket/data/target ``` #### Example HTTPS ```bash export HTTP_BASIC_USER="..." export HTTP_BASIC_PASSWORD="..." python -m wkcuber \ --scale 11.24,11.24,25 \ --data_format zarr \ data/source https://example.org/data/target ``` Exchange `https://` with `webdav+https://` for WebDAV. ## Development Make sure to install all the required dependencies using Poetry: ```bash pip install poetry poetry install ``` Please, format, lint, and unit test your code changes before merging them. ```bash poetry run black . poetry run pylint -j4 wkcuber poetry run pytest tests ``` Please, run the extended test suite: ```bash tests/scripts/all_tests.sh ``` PyPi releases are automatically pushed when creating a new Git tag/Github release. ## API documentation Check out the [latest version of the API documentation](https://docs.webknossos.org/api/wkcuber.html). ### Generate the API documentation Run `docs/generate.sh` to open a server displaying the API docs. `docs/generate.sh --persist` persists the html to `docs/api`. ## Test Data Credits Excerpts for testing purposes have been sampled from: * Dow Jacobo Hossain Siletti Hudspeth (2018). **Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit.** eLife. [DOI:10.7554/eLife.33988](https://elifesciences.org/articles/33988) * Zheng Lauritzen Perlman Robinson Nichols Milkie Torrens Price Fisher Sharifi Calle-Schuler Kmecova Ali Karsh Trautman Bogovic Hanslovsky Jefferis Kazhdan Khairy Saalfeld Fetter Bock (2018). **A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster.** Cell. [DOI:10.1016/j.cell.2018.06.019](https://www.cell.com/cell/fulltext/S0092-8674(18)30787-6). License: [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) ## License AGPLv3 Copyright scalable minds %prep %autosetup -n wkcuber-0.12.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-wkcuber -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.12.3-1 - Package Spec generated