%global _empty_manifest_terminate_build 0 Name: python-pybroom Version: 0.2 Release: 1 Summary: Make tidy DataFrames from messy fit/model results. License: MIT URL: http://pybroom.readthedocs.io/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/59/e2/69bf314fb580f81884eeb8b3b7ee78bfb025630237f4fbdd6f7ad8cf278b/pybroom-0.2.tar.gz BuildArch: noarch %description **Pybroom** is a small python 3+ library for converting collections of fit results (curve fitting or other optimizations) to `Pandas `__ `DataFrame `__ in tidy format (or long-form) `(Wickham 2014) `__. Once fit results are in tidy DataFrames, it is possible to leverage `common patterns `__ for tidy data analysis. Furthermore powerful visual explorations using multi-facet plots becomes easy thanks to libraries like `seaborn `__ natively supporting tidy DataFrames. See the `pybroom homepage `__ for more info. %package -n python3-pybroom Summary: Make tidy DataFrames from messy fit/model results. Provides: python-pybroom BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pybroom **Pybroom** is a small python 3+ library for converting collections of fit results (curve fitting or other optimizations) to `Pandas `__ `DataFrame `__ in tidy format (or long-form) `(Wickham 2014) `__. Once fit results are in tidy DataFrames, it is possible to leverage `common patterns `__ for tidy data analysis. Furthermore powerful visual explorations using multi-facet plots becomes easy thanks to libraries like `seaborn `__ natively supporting tidy DataFrames. See the `pybroom homepage `__ for more info. %package help Summary: Development documents and examples for pybroom Provides: python3-pybroom-doc %description help **Pybroom** is a small python 3+ library for converting collections of fit results (curve fitting or other optimizations) to `Pandas `__ `DataFrame `__ in tidy format (or long-form) `(Wickham 2014) `__. Once fit results are in tidy DataFrames, it is possible to leverage `common patterns `__ for tidy data analysis. Furthermore powerful visual explorations using multi-facet plots becomes easy thanks to libraries like `seaborn `__ natively supporting tidy DataFrames. See the `pybroom homepage `__ for more info. %prep %autosetup -n pybroom-0.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pybroom -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.2-1 - Package Spec generated