%global _empty_manifest_terminate_build 0 Name: python-cimcb Version: 1.1.0 Release: 1 Summary: This is a pre-release. License: http://www.apache.org/licenses/LICENSE-2.0.html URL: https://github.com/KevinMMendez/cimcb Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0f/48/1be2926978b5eecac0ae6c5427d8c9a20d8a07886659131d675e522d9bb3/cimcb-1.1.0.tar.gz BuildArch: noarch Requires: python3-bokeh Requires: python3-keras Requires: python3-numpy Requires: python3-pandas Requires: python3-scipy Requires: python3-scikit-learn Requires: python3-statsmodels Requires: python3-tensorflow Requires: python3-tqdm Requires: python3-xlrd Requires: python3-joblib %description drawing # cimcb cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data. ## Installation ### Dependencies cimcb requires: - Python (>=3.5) - Bokeh (>=1.0.0) - Keras - NumPy (>=1.12) - SciPy - scikit-learn - Statsmodels - TensorFlow - tqdm ### User installation The recommend way to install cimcb and dependencies is to using ``conda``: ```console conda install -c cimcb cimcb ``` or ``pip``: ```console pip install cimcb ``` Alternatively, to install directly from github: ```console pip install https://github.com/KevinMMendez/cimcb/archive/master.zip ``` ### Tutorial Open with Binders: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb) ### API For futher detail on the usage refer to the docstring. #### cimcb.model - [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm. - [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression. - [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression. - [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest. - [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine. - [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network. - [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network. - [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network. - [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network. #### cimcb.plot - [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh. - [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh. - [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh. - [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh. - [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh. - [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh. - [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh. #### cimcb.cross_val - [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics. #### cimcb.bootstrap - [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval. - [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval. - [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval. #### cimcb.utils - [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score. - [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA. - [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance. - [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file. - [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes. - [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'. - [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL). - [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class). - [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights. ### License cimcb is licensed under the ___ license. ### Authors - Kevin Mendez - [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en) ### Correspondence Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University. E-mail: d.broadhurst@ecu.edu.au ### Citation If you would cite cimcb in a scientific publication, you can use the following: ___ %package -n python3-cimcb Summary: This is a pre-release. Provides: python-cimcb BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-cimcb drawing # cimcb cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data. ## Installation ### Dependencies cimcb requires: - Python (>=3.5) - Bokeh (>=1.0.0) - Keras - NumPy (>=1.12) - SciPy - scikit-learn - Statsmodels - TensorFlow - tqdm ### User installation The recommend way to install cimcb and dependencies is to using ``conda``: ```console conda install -c cimcb cimcb ``` or ``pip``: ```console pip install cimcb ``` Alternatively, to install directly from github: ```console pip install https://github.com/KevinMMendez/cimcb/archive/master.zip ``` ### Tutorial Open with Binders: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb) ### API For futher detail on the usage refer to the docstring. #### cimcb.model - [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm. - [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression. - [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression. - [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest. - [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine. - [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network. - [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network. - [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network. - [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network. #### cimcb.plot - [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh. - [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh. - [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh. - [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh. - [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh. - [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh. - [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh. #### cimcb.cross_val - [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics. #### cimcb.bootstrap - [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval. - [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval. - [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval. #### cimcb.utils - [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score. - [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA. - [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance. - [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file. - [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes. - [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'. - [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL). - [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class). - [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights. ### License cimcb is licensed under the ___ license. ### Authors - Kevin Mendez - [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en) ### Correspondence Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University. E-mail: d.broadhurst@ecu.edu.au ### Citation If you would cite cimcb in a scientific publication, you can use the following: ___ %package help Summary: Development documents and examples for cimcb Provides: python3-cimcb-doc %description help drawing # cimcb cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data. ## Installation ### Dependencies cimcb requires: - Python (>=3.5) - Bokeh (>=1.0.0) - Keras - NumPy (>=1.12) - SciPy - scikit-learn - Statsmodels - TensorFlow - tqdm ### User installation The recommend way to install cimcb and dependencies is to using ``conda``: ```console conda install -c cimcb cimcb ``` or ``pip``: ```console pip install cimcb ``` Alternatively, to install directly from github: ```console pip install https://github.com/KevinMMendez/cimcb/archive/master.zip ``` ### Tutorial Open with Binders: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb) ### API For futher detail on the usage refer to the docstring. #### cimcb.model - [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm. - [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression. - [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression. - [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest. - [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine. - [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network. - [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network. - [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network. - [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network. #### cimcb.plot - [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh. - [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh. - [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh. - [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh. - [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh. - [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh. - [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh. #### cimcb.cross_val - [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics. #### cimcb.bootstrap - [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval. - [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval. - [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval. #### cimcb.utils - [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score. - [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA. - [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance. - [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file. - [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes. - [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'. - [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL). - [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class). - [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights. ### License cimcb is licensed under the ___ license. ### Authors - Kevin Mendez - [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en) ### Correspondence Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University. E-mail: d.broadhurst@ecu.edu.au ### Citation If you would cite cimcb in a scientific publication, you can use the following: ___ %prep %autosetup -n cimcb-1.1.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-cimcb -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot - 1.1.0-1 - Package Spec generated