%global _empty_manifest_terminate_build 0 Name: python-tsai Version: 0.3.6 Release: 1 Summary: Practical Deep Learning for Time Series / Sequential Data library based on fastai & Pytorch License: Apache Software License 2.0 URL: https://github.com/timeseriesAI/tsai/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6f/a1/75e13c89265c32d51db10bdf2d50b2a1ff8bf07f5fd62ec392ae57edd8c8/tsai-0.3.6.tar.gz BuildArch: noarch Requires: python3-fastai Requires: python3-pyts Requires: python3-imbalanced-learn Requires: python3-psutil Requires: python3-torch Requires: python3-nbdev Requires: python3-ipykernel Requires: python3-sktime Requires: python3-tsfresh Requires: python3-PyWavelets Requires: python3-nbformat %description


![CI](https://github.com/timeseriesai/tsai/workflows/CI/badge.svg) [![PyPI](https://img.shields.io/pypi/v/tsai?color=blue&label=pypi%20version.png)](https://pypi.org/project/tsai/#description) [![Conda (channel only)](https://img.shields.io/conda/vn/timeseriesai/tsai?color=brightgreen&label=conda%20version.png)](https://anaconda.org/timeseriesai/tsai) [![DOI](https://zenodo.org/badge/211822289.svg)](https://zenodo.org/badge/latestdoi/211822289) ![PRs](https://img.shields.io/badge/PRs-welcome-brightgreen.svg) ## Description > State-of-the-art Deep Learning library for Time Series and Sequences. `tsai` is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, imputation… `tsai` is currently under active development by timeseriesAI. ## What’s new: During the last few releases, here are some of the most significant additions to `tsai`: - **New models**: PatchTST (Accepted by ICLR 2023), RNN with Attention (RNNAttention, LSTMAttention, GRUAttention), TabFusionTransformer, … - **New datasets**: we have increased the number of datasets you can download using `tsai`: - 128 univariate classification datasets - 30 multivariate classification datasets - 15 regression datasets - 62 forecasting datasets - 9 long term forecasting datasets - **New tutorials**: [PatchTST](https://github.com/timeseriesAI/tsai/blob/main/tutorial_nbs/15_PatchTST_a_new_transformer_for_LTSF.ipynb). Based on some of your requests, we are planning to release additional tutorials on data preparation and forecasting. - **New functionality**: sklearn-type pipeline transforms, walk-foward cross validation, reduced RAM requirements, and a lot of new functionality to perform more accurate time series forecasts. - Pytorch 2.0 support. ## Installation ### Pip install You can install the **latest stable** version from pip using: ``` python pip install tsai ``` If you plan to develop tsai yourself, or want to be on the cutting edge, you can use an editable install. First install PyTorch, and then: ``` python git clone https://github.com/timeseriesAI/tsai pip install -e "tsai[dev]" ``` Note: starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install it when necessary). If you still want to install tsai with all its dependencies you can do it by running: ``` python pip install tsai[extras] ``` ### Conda install You can also install tsai using conda (note that if you replace conda with mamba the install process will be much faster and more reliable): ``` python conda install -c timeseriesai tsai ``` ## Documentation Here’s the link to the [documentation](https://timeseriesai.github.io/tsai/). ## Available models: Here’s a list with some of the state-of-the-art models available in `tsai`: - [LSTM](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN.py) (Hochreiter, 1997) ([paper](https://ieeexplore.ieee.org/abstract/document/6795963/)) - [GRU](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN.py) (Cho, 2014) ([paper](https://arxiv.org/abs/1412.3555)) - [MLP](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/MLP.py) - Multilayer Perceptron (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/FCN.py) - Fully Convolutional Network (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [ResNet](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py) - Residual Network (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [LSTM-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) (Karim, 2017) ([paper](https://arxiv.org/abs/1709.05206)) - [GRU-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) (Elsayed, 2018) ([paper](https://arxiv.org/abs/1812.07683)) - [mWDN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/mWDN.py) - Multilevel wavelet decomposition network (Wang, 2018) ([paper](https://dl.acm.org/doi/abs/10.1145/3219819.3220060)) - [TCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TCN.py) - Temporal Convolutional Network (Bai, 2018) ([paper](https://arxiv.org/abs/1803.01271)) - [MLSTM-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) - Multivariate LSTM-FCN (Karim, 2019) ([paper](https://www.sciencedirect.com/science/article/abs/pii/S0893608019301200)) - [InceptionTime](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/InceptionTime.py) (Fawaz, 2019) ([paper](https://arxiv.org/abs/1909.04939)) - [Rocket](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ROCKET.py) (Dempster, 2019) ([paper](https://arxiv.org/abs/1910.13051)) - [XceptionTime](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/XceptionTime.py) (Rahimian, 2019) ([paper](https://arxiv.org/abs/1911.03803)) - [ResCNN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResCNN.py) - 1D-ResCNN (Zou , 2019) ([paper](https://www.sciencedirect.com/science/article/pii/S0925231219311506)) - [TabModel](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TabModel.py) - modified from fastai’s [TabularModel](https://docs.fast.ai/tabular.model.html#TabularModel) - [OmniScale](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/OmniScaleCNN.py) - Omni-Scale 1D-CNN (Tang, 2020) ([paper](https://arxiv.org/abs/2002.10061)) - [TST](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TST.py) - Time Series Transformer (Zerveas, 2020) ([paper](https://dl.acm.org/doi/abs/10.1145/3447548.3467401)) - [TabTransformer](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TabTransformer.py) (Huang, 2020) ([paper](https://arxiv.org/pdf/2012.06678)) - [TSiT](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSiTPlus.py) Adapted from ViT (Dosovitskiy, 2020) ([paper](https://arxiv.org/abs/2010.11929)) - [MiniRocket](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/MINIROCKET.py) (Dempster, 2021) ([paper](https://arxiv.org/abs/2102.00457)) - [XCM](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/XCM.py) - An Explainable Convolutional Neural Network (Fauvel, 2021) ([paper](https://hal.inria.fr/hal-03469487/document)) - [gMLP](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/gMLP.py) - Gated Multilayer Perceptron (Liu, 2021) ([paper](https://arxiv.org/abs/2105.08050)) - [TSPerceiver](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSPerceiver.py) - Adapted from Perceiver IO (Jaegle, 2021) ([paper](https://arxiv.org/abs/2107.14795)) - [GatedTabTransformer](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/GatedTabTransformer.py) (Cholakov, 2022) ([paper](https://arxiv.org/abs/2201.00199)) - [TSSequencerPlus](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSSequencerPlus.py) - Adapted from Sequencer (Tatsunami, 2022) ([paper](https://arxiv.org/abs/2205.01972)) - [PatchTST](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/PatchTST.py) - (Nie, 2022) ([paper](https://arxiv.org/abs/2211.14730)) plus other custom models like: TransformerModel, LSTMAttention, GRUAttention, … ## How to start using tsai? To get to know the tsai package, we’d suggest you start with this notebook in Google Colab: **[01_Intro_to_Time_Series_Classification](https://colab.research.google.com/github/timeseriesAI/tsai/blob/master/tutorial_nbs/01_Intro_to_Time_Series_Classification.ipynb)** It provides an overview of a time series classification task. We have also develop many other [tutorial notebooks](https://github.com/timeseriesAI/tsai/tree/main/tutorial_nbs). To use tsai in your own notebooks, the only thing you need to do after you have installed the package is to run this: ``` python from tsai.all import * ``` ## Examples These are just a few examples of how you can use `tsai`: ### Binary, univariate classification **Training:** ``` python from tsai.basics import * X, y, splits = get_classification_data('ECG200', split_data=False) tfms = [None, TSClassification()] batch_tfms = TSStandardize() clf = TSClassifier(X, y, splits=splits, path='models', arch="InceptionTimePlus", tfms=tfms, batch_tfms=batch_tfms, metrics=accuracy, cbs=ShowGraph()) clf.fit_one_cycle(100, 3e-4) clf.export("clf.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner clf = load_learner("models/clf.pkl") probas, target, preds = clf.get_X_preds(X[splits[1]], y[splits[1]]) ``` ### Multi-class, multivariate classification **Training:** ``` python from tsai.basics import * X, y, splits = get_classification_data('LSST', split_data=False) tfms = [None, TSClassification()] batch_tfms = TSStandardize(by_sample=True) mv_clf = TSClassifier(X, y, splits=splits, path='models', arch="InceptionTimePlus", tfms=tfms, batch_tfms=batch_tfms, metrics=accuracy, cbs=ShowGraph()) mv_clf.fit_one_cycle(10, 1e-2) mv_clf.export("mv_clf.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner mv_clf = load_learner("models/mv_clf.pkl") probas, target, preds = mv_clf.get_X_preds(X[splits[1]], y[splits[1]]) ``` ### Multivariate Regression **Training:** ``` python from tsai.basics import * X, y, splits = get_regression_data('AppliancesEnergy', split_data=False) tfms = [None, TSRegression()] batch_tfms = TSStandardize(by_sample=True) reg = TSRegressor(X, y, splits=splits, path='models', arch="TSTPlus", tfms=tfms, batch_tfms=batch_tfms, metrics=rmse, cbs=ShowGraph(), verbose=True) reg.fit_one_cycle(100, 3e-4) reg.export("reg.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner reg = load_learner("models/reg.pkl") raw_preds, target, preds = reg.get_X_preds(X[splits[1]], y[splits[1]]) ``` The ROCKETs (RocketClassifier, RocketRegressor, MiniRocketClassifier, MiniRocketRegressor, MiniRocketVotingClassifier or MiniRocketVotingRegressor) are somewhat different models. They are not actually deep learning models (although they use convolutions) and are used in a different way. ⚠️ You’ll also need to install sktime to be able to use them. You can install it separately: ``` python pip install sktime ``` or use: ``` python pip install tsai[extras] ``` **Training:** ``` python from sklearn.metrics import mean_squared_error, make_scorer from tsai.data.external import get_Monash_regression_data from tsai.models.MINIROCKET import MiniRocketRegressor X_train, y_train, *_ = get_Monash_regression_data('AppliancesEnergy') rmse_scorer = make_scorer(mean_squared_error, greater_is_better=False) reg = MiniRocketRegressor(scoring=rmse_scorer) reg.fit(X_train, y_train) reg.save('MiniRocketRegressor') ``` **Inference:** ``` python from sklearn.metrics import mean_squared_error from tsai.data.external import get_Monash_regression_data from tsai.models.MINIROCKET import load_minirocket *_, X_test, y_test = get_Monash_regression_data('AppliancesEnergy') reg = load_minirocket('MiniRocketRegressor') y_pred = reg.predict(X_test) mean_squared_error(y_test, y_pred, squared=False) ``` ### Forecasting You can use tsai for forecast in the following scenarios: - univariate or multivariate time series input - univariate or multivariate time series output - single or multi-step ahead You’ll need to: \* prepare X (time series input) and the target y (see [documentation](https://timeseriesai.github.io/tsai/data.preparation.html)) \* select PatchTST or one of tsai’s models ending in Plus (TSTPlus, InceptionTimePlus, TSiTPlus, etc). The model will auto-configure a head to yield an output with the same shape as the target input y. #### Single step **Training:** ``` python from tsai.basics import * ts = get_forecasting_time_series("Sunspots").values X, y = SlidingWindow(60, horizon=1)(ts) splits = TimeSplitter(235)(y) tfms = [None, TSForecasting()] batch_tfms = TSStandardize() fcst = TSForecaster(X, y, splits=splits, path='models', tfms=tfms, batch_tfms=batch_tfms, bs=512, arch="TSTPlus", metrics=mae, cbs=ShowGraph()) fcst.fit_one_cycle(50, 1e-3) fcst.export("fcst.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner fcst = load_learner("models/fcst.pkl", cpu=False) raw_preds, target, preds = fcst.get_X_preds(X[splits[1]], y[splits[1]]) raw_preds.shape # torch.Size([235, 1]) ``` #### Multi-step This example show how to build a 3-step ahead univariate forecast. **Training:** ``` python from tsai.basics import * ts = get_forecasting_time_series("Sunspots").values X, y = SlidingWindow(60, horizon=3)(ts) splits = TimeSplitter(235, fcst_horizon=3)(y) tfms = [None, TSForecasting()] batch_tfms = TSStandardize() fcst = TSForecaster(X, y, splits=splits, path='models', tfms=tfms, batch_tfms=batch_tfms, bs=512, arch="TSTPlus", metrics=mae, cbs=ShowGraph()) fcst.fit_one_cycle(50, 1e-3) fcst.export("fcst.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner fcst = load_learner("models/fcst.pkl", cpu=False) raw_preds, target, preds = fcst.get_X_preds(X[splits[1]], y[splits[1]]) raw_preds.shape # torch.Size([235, 3]) ``` ## Input data format The input format for all time series models and image models in tsai is the same. An np.ndarray (or array-like object like zarr, etc) with 3 dimensions: **\[# samples x \# variables x sequence length\]** The input format for tabular models in tsai (like TabModel, TabTransformer and TabFusionTransformer) is a pandas dataframe. See [example](https://timeseriesai.github.io/tsai/models.TabModel.html). ## How to contribute to tsai? We welcome contributions of all kinds. Development of enhancements, bug fixes, documentation, tutorial notebooks, … We have created a guide to help you start contributing to tsai. You can read it [here](https://github.com/timeseriesAI/tsai/blob/main/CONTRIBUTING.md). ## Enterprise support and consulting services: Want to make the most out of timeseriesAI/tsai in a professional setting? Let us help. Send us an email to learn more: info@timeseriesai.co ## Citing tsai If you use tsai in your research please use the following BibTeX entry: ``` text @Misc{tsai, author = {Ignacio Oguiza}, title = {tsai - A state-of-the-art deep learning library for time series and sequential data}, howpublished = {Github}, year = {2022}, url = {https://github.com/timeseriesAI/tsai} } ``` %package -n python3-tsai Summary: Practical Deep Learning for Time Series / Sequential Data library based on fastai & Pytorch Provides: python-tsai BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-tsai


![CI](https://github.com/timeseriesai/tsai/workflows/CI/badge.svg) [![PyPI](https://img.shields.io/pypi/v/tsai?color=blue&label=pypi%20version.png)](https://pypi.org/project/tsai/#description) [![Conda (channel only)](https://img.shields.io/conda/vn/timeseriesai/tsai?color=brightgreen&label=conda%20version.png)](https://anaconda.org/timeseriesai/tsai) [![DOI](https://zenodo.org/badge/211822289.svg)](https://zenodo.org/badge/latestdoi/211822289) ![PRs](https://img.shields.io/badge/PRs-welcome-brightgreen.svg) ## Description > State-of-the-art Deep Learning library for Time Series and Sequences. `tsai` is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, imputation… `tsai` is currently under active development by timeseriesAI. ## What’s new: During the last few releases, here are some of the most significant additions to `tsai`: - **New models**: PatchTST (Accepted by ICLR 2023), RNN with Attention (RNNAttention, LSTMAttention, GRUAttention), TabFusionTransformer, … - **New datasets**: we have increased the number of datasets you can download using `tsai`: - 128 univariate classification datasets - 30 multivariate classification datasets - 15 regression datasets - 62 forecasting datasets - 9 long term forecasting datasets - **New tutorials**: [PatchTST](https://github.com/timeseriesAI/tsai/blob/main/tutorial_nbs/15_PatchTST_a_new_transformer_for_LTSF.ipynb). Based on some of your requests, we are planning to release additional tutorials on data preparation and forecasting. - **New functionality**: sklearn-type pipeline transforms, walk-foward cross validation, reduced RAM requirements, and a lot of new functionality to perform more accurate time series forecasts. - Pytorch 2.0 support. ## Installation ### Pip install You can install the **latest stable** version from pip using: ``` python pip install tsai ``` If you plan to develop tsai yourself, or want to be on the cutting edge, you can use an editable install. First install PyTorch, and then: ``` python git clone https://github.com/timeseriesAI/tsai pip install -e "tsai[dev]" ``` Note: starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install it when necessary). If you still want to install tsai with all its dependencies you can do it by running: ``` python pip install tsai[extras] ``` ### Conda install You can also install tsai using conda (note that if you replace conda with mamba the install process will be much faster and more reliable): ``` python conda install -c timeseriesai tsai ``` ## Documentation Here’s the link to the [documentation](https://timeseriesai.github.io/tsai/). ## Available models: Here’s a list with some of the state-of-the-art models available in `tsai`: - [LSTM](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN.py) (Hochreiter, 1997) ([paper](https://ieeexplore.ieee.org/abstract/document/6795963/)) - [GRU](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN.py) (Cho, 2014) ([paper](https://arxiv.org/abs/1412.3555)) - [MLP](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/MLP.py) - Multilayer Perceptron (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/FCN.py) - Fully Convolutional Network (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [ResNet](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py) - Residual Network (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [LSTM-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) (Karim, 2017) ([paper](https://arxiv.org/abs/1709.05206)) - [GRU-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) (Elsayed, 2018) ([paper](https://arxiv.org/abs/1812.07683)) - [mWDN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/mWDN.py) - Multilevel wavelet decomposition network (Wang, 2018) ([paper](https://dl.acm.org/doi/abs/10.1145/3219819.3220060)) - [TCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TCN.py) - Temporal Convolutional Network (Bai, 2018) ([paper](https://arxiv.org/abs/1803.01271)) - [MLSTM-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) - Multivariate LSTM-FCN (Karim, 2019) ([paper](https://www.sciencedirect.com/science/article/abs/pii/S0893608019301200)) - [InceptionTime](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/InceptionTime.py) (Fawaz, 2019) ([paper](https://arxiv.org/abs/1909.04939)) - [Rocket](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ROCKET.py) (Dempster, 2019) ([paper](https://arxiv.org/abs/1910.13051)) - [XceptionTime](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/XceptionTime.py) (Rahimian, 2019) ([paper](https://arxiv.org/abs/1911.03803)) - [ResCNN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResCNN.py) - 1D-ResCNN (Zou , 2019) ([paper](https://www.sciencedirect.com/science/article/pii/S0925231219311506)) - [TabModel](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TabModel.py) - modified from fastai’s [TabularModel](https://docs.fast.ai/tabular.model.html#TabularModel) - [OmniScale](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/OmniScaleCNN.py) - Omni-Scale 1D-CNN (Tang, 2020) ([paper](https://arxiv.org/abs/2002.10061)) - [TST](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TST.py) - Time Series Transformer (Zerveas, 2020) ([paper](https://dl.acm.org/doi/abs/10.1145/3447548.3467401)) - [TabTransformer](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TabTransformer.py) (Huang, 2020) ([paper](https://arxiv.org/pdf/2012.06678)) - [TSiT](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSiTPlus.py) Adapted from ViT (Dosovitskiy, 2020) ([paper](https://arxiv.org/abs/2010.11929)) - [MiniRocket](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/MINIROCKET.py) (Dempster, 2021) ([paper](https://arxiv.org/abs/2102.00457)) - [XCM](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/XCM.py) - An Explainable Convolutional Neural Network (Fauvel, 2021) ([paper](https://hal.inria.fr/hal-03469487/document)) - [gMLP](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/gMLP.py) - Gated Multilayer Perceptron (Liu, 2021) ([paper](https://arxiv.org/abs/2105.08050)) - [TSPerceiver](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSPerceiver.py) - Adapted from Perceiver IO (Jaegle, 2021) ([paper](https://arxiv.org/abs/2107.14795)) - [GatedTabTransformer](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/GatedTabTransformer.py) (Cholakov, 2022) ([paper](https://arxiv.org/abs/2201.00199)) - [TSSequencerPlus](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSSequencerPlus.py) - Adapted from Sequencer (Tatsunami, 2022) ([paper](https://arxiv.org/abs/2205.01972)) - [PatchTST](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/PatchTST.py) - (Nie, 2022) ([paper](https://arxiv.org/abs/2211.14730)) plus other custom models like: TransformerModel, LSTMAttention, GRUAttention, … ## How to start using tsai? To get to know the tsai package, we’d suggest you start with this notebook in Google Colab: **[01_Intro_to_Time_Series_Classification](https://colab.research.google.com/github/timeseriesAI/tsai/blob/master/tutorial_nbs/01_Intro_to_Time_Series_Classification.ipynb)** It provides an overview of a time series classification task. We have also develop many other [tutorial notebooks](https://github.com/timeseriesAI/tsai/tree/main/tutorial_nbs). To use tsai in your own notebooks, the only thing you need to do after you have installed the package is to run this: ``` python from tsai.all import * ``` ## Examples These are just a few examples of how you can use `tsai`: ### Binary, univariate classification **Training:** ``` python from tsai.basics import * X, y, splits = get_classification_data('ECG200', split_data=False) tfms = [None, TSClassification()] batch_tfms = TSStandardize() clf = TSClassifier(X, y, splits=splits, path='models', arch="InceptionTimePlus", tfms=tfms, batch_tfms=batch_tfms, metrics=accuracy, cbs=ShowGraph()) clf.fit_one_cycle(100, 3e-4) clf.export("clf.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner clf = load_learner("models/clf.pkl") probas, target, preds = clf.get_X_preds(X[splits[1]], y[splits[1]]) ``` ### Multi-class, multivariate classification **Training:** ``` python from tsai.basics import * X, y, splits = get_classification_data('LSST', split_data=False) tfms = [None, TSClassification()] batch_tfms = TSStandardize(by_sample=True) mv_clf = TSClassifier(X, y, splits=splits, path='models', arch="InceptionTimePlus", tfms=tfms, batch_tfms=batch_tfms, metrics=accuracy, cbs=ShowGraph()) mv_clf.fit_one_cycle(10, 1e-2) mv_clf.export("mv_clf.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner mv_clf = load_learner("models/mv_clf.pkl") probas, target, preds = mv_clf.get_X_preds(X[splits[1]], y[splits[1]]) ``` ### Multivariate Regression **Training:** ``` python from tsai.basics import * X, y, splits = get_regression_data('AppliancesEnergy', split_data=False) tfms = [None, TSRegression()] batch_tfms = TSStandardize(by_sample=True) reg = TSRegressor(X, y, splits=splits, path='models', arch="TSTPlus", tfms=tfms, batch_tfms=batch_tfms, metrics=rmse, cbs=ShowGraph(), verbose=True) reg.fit_one_cycle(100, 3e-4) reg.export("reg.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner reg = load_learner("models/reg.pkl") raw_preds, target, preds = reg.get_X_preds(X[splits[1]], y[splits[1]]) ``` The ROCKETs (RocketClassifier, RocketRegressor, MiniRocketClassifier, MiniRocketRegressor, MiniRocketVotingClassifier or MiniRocketVotingRegressor) are somewhat different models. They are not actually deep learning models (although they use convolutions) and are used in a different way. ⚠️ You’ll also need to install sktime to be able to use them. You can install it separately: ``` python pip install sktime ``` or use: ``` python pip install tsai[extras] ``` **Training:** ``` python from sklearn.metrics import mean_squared_error, make_scorer from tsai.data.external import get_Monash_regression_data from tsai.models.MINIROCKET import MiniRocketRegressor X_train, y_train, *_ = get_Monash_regression_data('AppliancesEnergy') rmse_scorer = make_scorer(mean_squared_error, greater_is_better=False) reg = MiniRocketRegressor(scoring=rmse_scorer) reg.fit(X_train, y_train) reg.save('MiniRocketRegressor') ``` **Inference:** ``` python from sklearn.metrics import mean_squared_error from tsai.data.external import get_Monash_regression_data from tsai.models.MINIROCKET import load_minirocket *_, X_test, y_test = get_Monash_regression_data('AppliancesEnergy') reg = load_minirocket('MiniRocketRegressor') y_pred = reg.predict(X_test) mean_squared_error(y_test, y_pred, squared=False) ``` ### Forecasting You can use tsai for forecast in the following scenarios: - univariate or multivariate time series input - univariate or multivariate time series output - single or multi-step ahead You’ll need to: \* prepare X (time series input) and the target y (see [documentation](https://timeseriesai.github.io/tsai/data.preparation.html)) \* select PatchTST or one of tsai’s models ending in Plus (TSTPlus, InceptionTimePlus, TSiTPlus, etc). The model will auto-configure a head to yield an output with the same shape as the target input y. #### Single step **Training:** ``` python from tsai.basics import * ts = get_forecasting_time_series("Sunspots").values X, y = SlidingWindow(60, horizon=1)(ts) splits = TimeSplitter(235)(y) tfms = [None, TSForecasting()] batch_tfms = TSStandardize() fcst = TSForecaster(X, y, splits=splits, path='models', tfms=tfms, batch_tfms=batch_tfms, bs=512, arch="TSTPlus", metrics=mae, cbs=ShowGraph()) fcst.fit_one_cycle(50, 1e-3) fcst.export("fcst.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner fcst = load_learner("models/fcst.pkl", cpu=False) raw_preds, target, preds = fcst.get_X_preds(X[splits[1]], y[splits[1]]) raw_preds.shape # torch.Size([235, 1]) ``` #### Multi-step This example show how to build a 3-step ahead univariate forecast. **Training:** ``` python from tsai.basics import * ts = get_forecasting_time_series("Sunspots").values X, y = SlidingWindow(60, horizon=3)(ts) splits = TimeSplitter(235, fcst_horizon=3)(y) tfms = [None, TSForecasting()] batch_tfms = TSStandardize() fcst = TSForecaster(X, y, splits=splits, path='models', tfms=tfms, batch_tfms=batch_tfms, bs=512, arch="TSTPlus", metrics=mae, cbs=ShowGraph()) fcst.fit_one_cycle(50, 1e-3) fcst.export("fcst.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner fcst = load_learner("models/fcst.pkl", cpu=False) raw_preds, target, preds = fcst.get_X_preds(X[splits[1]], y[splits[1]]) raw_preds.shape # torch.Size([235, 3]) ``` ## Input data format The input format for all time series models and image models in tsai is the same. An np.ndarray (or array-like object like zarr, etc) with 3 dimensions: **\[# samples x \# variables x sequence length\]** The input format for tabular models in tsai (like TabModel, TabTransformer and TabFusionTransformer) is a pandas dataframe. See [example](https://timeseriesai.github.io/tsai/models.TabModel.html). ## How to contribute to tsai? We welcome contributions of all kinds. Development of enhancements, bug fixes, documentation, tutorial notebooks, … We have created a guide to help you start contributing to tsai. You can read it [here](https://github.com/timeseriesAI/tsai/blob/main/CONTRIBUTING.md). ## Enterprise support and consulting services: Want to make the most out of timeseriesAI/tsai in a professional setting? Let us help. Send us an email to learn more: info@timeseriesai.co ## Citing tsai If you use tsai in your research please use the following BibTeX entry: ``` text @Misc{tsai, author = {Ignacio Oguiza}, title = {tsai - A state-of-the-art deep learning library for time series and sequential data}, howpublished = {Github}, year = {2022}, url = {https://github.com/timeseriesAI/tsai} } ``` %package help Summary: Development documents and examples for tsai Provides: python3-tsai-doc %description help


![CI](https://github.com/timeseriesai/tsai/workflows/CI/badge.svg) [![PyPI](https://img.shields.io/pypi/v/tsai?color=blue&label=pypi%20version.png)](https://pypi.org/project/tsai/#description) [![Conda (channel only)](https://img.shields.io/conda/vn/timeseriesai/tsai?color=brightgreen&label=conda%20version.png)](https://anaconda.org/timeseriesai/tsai) [![DOI](https://zenodo.org/badge/211822289.svg)](https://zenodo.org/badge/latestdoi/211822289) ![PRs](https://img.shields.io/badge/PRs-welcome-brightgreen.svg) ## Description > State-of-the-art Deep Learning library for Time Series and Sequences. `tsai` is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, imputation… `tsai` is currently under active development by timeseriesAI. ## What’s new: During the last few releases, here are some of the most significant additions to `tsai`: - **New models**: PatchTST (Accepted by ICLR 2023), RNN with Attention (RNNAttention, LSTMAttention, GRUAttention), TabFusionTransformer, … - **New datasets**: we have increased the number of datasets you can download using `tsai`: - 128 univariate classification datasets - 30 multivariate classification datasets - 15 regression datasets - 62 forecasting datasets - 9 long term forecasting datasets - **New tutorials**: [PatchTST](https://github.com/timeseriesAI/tsai/blob/main/tutorial_nbs/15_PatchTST_a_new_transformer_for_LTSF.ipynb). Based on some of your requests, we are planning to release additional tutorials on data preparation and forecasting. - **New functionality**: sklearn-type pipeline transforms, walk-foward cross validation, reduced RAM requirements, and a lot of new functionality to perform more accurate time series forecasts. - Pytorch 2.0 support. ## Installation ### Pip install You can install the **latest stable** version from pip using: ``` python pip install tsai ``` If you plan to develop tsai yourself, or want to be on the cutting edge, you can use an editable install. First install PyTorch, and then: ``` python git clone https://github.com/timeseriesAI/tsai pip install -e "tsai[dev]" ``` Note: starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install it when necessary). If you still want to install tsai with all its dependencies you can do it by running: ``` python pip install tsai[extras] ``` ### Conda install You can also install tsai using conda (note that if you replace conda with mamba the install process will be much faster and more reliable): ``` python conda install -c timeseriesai tsai ``` ## Documentation Here’s the link to the [documentation](https://timeseriesai.github.io/tsai/). ## Available models: Here’s a list with some of the state-of-the-art models available in `tsai`: - [LSTM](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN.py) (Hochreiter, 1997) ([paper](https://ieeexplore.ieee.org/abstract/document/6795963/)) - [GRU](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN.py) (Cho, 2014) ([paper](https://arxiv.org/abs/1412.3555)) - [MLP](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/MLP.py) - Multilayer Perceptron (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/FCN.py) - Fully Convolutional Network (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [ResNet](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py) - Residual Network (Wang, 2016) ([paper](https://arxiv.org/abs/1611.06455)) - [LSTM-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) (Karim, 2017) ([paper](https://arxiv.org/abs/1709.05206)) - [GRU-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) (Elsayed, 2018) ([paper](https://arxiv.org/abs/1812.07683)) - [mWDN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/mWDN.py) - Multilevel wavelet decomposition network (Wang, 2018) ([paper](https://dl.acm.org/doi/abs/10.1145/3219819.3220060)) - [TCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TCN.py) - Temporal Convolutional Network (Bai, 2018) ([paper](https://arxiv.org/abs/1803.01271)) - [MLSTM-FCN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN_FCN.py) - Multivariate LSTM-FCN (Karim, 2019) ([paper](https://www.sciencedirect.com/science/article/abs/pii/S0893608019301200)) - [InceptionTime](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/InceptionTime.py) (Fawaz, 2019) ([paper](https://arxiv.org/abs/1909.04939)) - [Rocket](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ROCKET.py) (Dempster, 2019) ([paper](https://arxiv.org/abs/1910.13051)) - [XceptionTime](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/XceptionTime.py) (Rahimian, 2019) ([paper](https://arxiv.org/abs/1911.03803)) - [ResCNN](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResCNN.py) - 1D-ResCNN (Zou , 2019) ([paper](https://www.sciencedirect.com/science/article/pii/S0925231219311506)) - [TabModel](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TabModel.py) - modified from fastai’s [TabularModel](https://docs.fast.ai/tabular.model.html#TabularModel) - [OmniScale](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/OmniScaleCNN.py) - Omni-Scale 1D-CNN (Tang, 2020) ([paper](https://arxiv.org/abs/2002.10061)) - [TST](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TST.py) - Time Series Transformer (Zerveas, 2020) ([paper](https://dl.acm.org/doi/abs/10.1145/3447548.3467401)) - [TabTransformer](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TabTransformer.py) (Huang, 2020) ([paper](https://arxiv.org/pdf/2012.06678)) - [TSiT](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSiTPlus.py) Adapted from ViT (Dosovitskiy, 2020) ([paper](https://arxiv.org/abs/2010.11929)) - [MiniRocket](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/MINIROCKET.py) (Dempster, 2021) ([paper](https://arxiv.org/abs/2102.00457)) - [XCM](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/XCM.py) - An Explainable Convolutional Neural Network (Fauvel, 2021) ([paper](https://hal.inria.fr/hal-03469487/document)) - [gMLP](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/gMLP.py) - Gated Multilayer Perceptron (Liu, 2021) ([paper](https://arxiv.org/abs/2105.08050)) - [TSPerceiver](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSPerceiver.py) - Adapted from Perceiver IO (Jaegle, 2021) ([paper](https://arxiv.org/abs/2107.14795)) - [GatedTabTransformer](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/GatedTabTransformer.py) (Cholakov, 2022) ([paper](https://arxiv.org/abs/2201.00199)) - [TSSequencerPlus](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/TSSequencerPlus.py) - Adapted from Sequencer (Tatsunami, 2022) ([paper](https://arxiv.org/abs/2205.01972)) - [PatchTST](https://github.com/timeseriesAI/tsai/blob/main/tsai/models/PatchTST.py) - (Nie, 2022) ([paper](https://arxiv.org/abs/2211.14730)) plus other custom models like: TransformerModel, LSTMAttention, GRUAttention, … ## How to start using tsai? To get to know the tsai package, we’d suggest you start with this notebook in Google Colab: **[01_Intro_to_Time_Series_Classification](https://colab.research.google.com/github/timeseriesAI/tsai/blob/master/tutorial_nbs/01_Intro_to_Time_Series_Classification.ipynb)** It provides an overview of a time series classification task. We have also develop many other [tutorial notebooks](https://github.com/timeseriesAI/tsai/tree/main/tutorial_nbs). To use tsai in your own notebooks, the only thing you need to do after you have installed the package is to run this: ``` python from tsai.all import * ``` ## Examples These are just a few examples of how you can use `tsai`: ### Binary, univariate classification **Training:** ``` python from tsai.basics import * X, y, splits = get_classification_data('ECG200', split_data=False) tfms = [None, TSClassification()] batch_tfms = TSStandardize() clf = TSClassifier(X, y, splits=splits, path='models', arch="InceptionTimePlus", tfms=tfms, batch_tfms=batch_tfms, metrics=accuracy, cbs=ShowGraph()) clf.fit_one_cycle(100, 3e-4) clf.export("clf.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner clf = load_learner("models/clf.pkl") probas, target, preds = clf.get_X_preds(X[splits[1]], y[splits[1]]) ``` ### Multi-class, multivariate classification **Training:** ``` python from tsai.basics import * X, y, splits = get_classification_data('LSST', split_data=False) tfms = [None, TSClassification()] batch_tfms = TSStandardize(by_sample=True) mv_clf = TSClassifier(X, y, splits=splits, path='models', arch="InceptionTimePlus", tfms=tfms, batch_tfms=batch_tfms, metrics=accuracy, cbs=ShowGraph()) mv_clf.fit_one_cycle(10, 1e-2) mv_clf.export("mv_clf.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner mv_clf = load_learner("models/mv_clf.pkl") probas, target, preds = mv_clf.get_X_preds(X[splits[1]], y[splits[1]]) ``` ### Multivariate Regression **Training:** ``` python from tsai.basics import * X, y, splits = get_regression_data('AppliancesEnergy', split_data=False) tfms = [None, TSRegression()] batch_tfms = TSStandardize(by_sample=True) reg = TSRegressor(X, y, splits=splits, path='models', arch="TSTPlus", tfms=tfms, batch_tfms=batch_tfms, metrics=rmse, cbs=ShowGraph(), verbose=True) reg.fit_one_cycle(100, 3e-4) reg.export("reg.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner reg = load_learner("models/reg.pkl") raw_preds, target, preds = reg.get_X_preds(X[splits[1]], y[splits[1]]) ``` The ROCKETs (RocketClassifier, RocketRegressor, MiniRocketClassifier, MiniRocketRegressor, MiniRocketVotingClassifier or MiniRocketVotingRegressor) are somewhat different models. They are not actually deep learning models (although they use convolutions) and are used in a different way. ⚠️ You’ll also need to install sktime to be able to use them. You can install it separately: ``` python pip install sktime ``` or use: ``` python pip install tsai[extras] ``` **Training:** ``` python from sklearn.metrics import mean_squared_error, make_scorer from tsai.data.external import get_Monash_regression_data from tsai.models.MINIROCKET import MiniRocketRegressor X_train, y_train, *_ = get_Monash_regression_data('AppliancesEnergy') rmse_scorer = make_scorer(mean_squared_error, greater_is_better=False) reg = MiniRocketRegressor(scoring=rmse_scorer) reg.fit(X_train, y_train) reg.save('MiniRocketRegressor') ``` **Inference:** ``` python from sklearn.metrics import mean_squared_error from tsai.data.external import get_Monash_regression_data from tsai.models.MINIROCKET import load_minirocket *_, X_test, y_test = get_Monash_regression_data('AppliancesEnergy') reg = load_minirocket('MiniRocketRegressor') y_pred = reg.predict(X_test) mean_squared_error(y_test, y_pred, squared=False) ``` ### Forecasting You can use tsai for forecast in the following scenarios: - univariate or multivariate time series input - univariate or multivariate time series output - single or multi-step ahead You’ll need to: \* prepare X (time series input) and the target y (see [documentation](https://timeseriesai.github.io/tsai/data.preparation.html)) \* select PatchTST or one of tsai’s models ending in Plus (TSTPlus, InceptionTimePlus, TSiTPlus, etc). The model will auto-configure a head to yield an output with the same shape as the target input y. #### Single step **Training:** ``` python from tsai.basics import * ts = get_forecasting_time_series("Sunspots").values X, y = SlidingWindow(60, horizon=1)(ts) splits = TimeSplitter(235)(y) tfms = [None, TSForecasting()] batch_tfms = TSStandardize() fcst = TSForecaster(X, y, splits=splits, path='models', tfms=tfms, batch_tfms=batch_tfms, bs=512, arch="TSTPlus", metrics=mae, cbs=ShowGraph()) fcst.fit_one_cycle(50, 1e-3) fcst.export("fcst.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner fcst = load_learner("models/fcst.pkl", cpu=False) raw_preds, target, preds = fcst.get_X_preds(X[splits[1]], y[splits[1]]) raw_preds.shape # torch.Size([235, 1]) ``` #### Multi-step This example show how to build a 3-step ahead univariate forecast. **Training:** ``` python from tsai.basics import * ts = get_forecasting_time_series("Sunspots").values X, y = SlidingWindow(60, horizon=3)(ts) splits = TimeSplitter(235, fcst_horizon=3)(y) tfms = [None, TSForecasting()] batch_tfms = TSStandardize() fcst = TSForecaster(X, y, splits=splits, path='models', tfms=tfms, batch_tfms=batch_tfms, bs=512, arch="TSTPlus", metrics=mae, cbs=ShowGraph()) fcst.fit_one_cycle(50, 1e-3) fcst.export("fcst.pkl") ``` **Inference:** ``` python from tsai.inference import load_learner fcst = load_learner("models/fcst.pkl", cpu=False) raw_preds, target, preds = fcst.get_X_preds(X[splits[1]], y[splits[1]]) raw_preds.shape # torch.Size([235, 3]) ``` ## Input data format The input format for all time series models and image models in tsai is the same. An np.ndarray (or array-like object like zarr, etc) with 3 dimensions: **\[# samples x \# variables x sequence length\]** The input format for tabular models in tsai (like TabModel, TabTransformer and TabFusionTransformer) is a pandas dataframe. See [example](https://timeseriesai.github.io/tsai/models.TabModel.html). ## How to contribute to tsai? We welcome contributions of all kinds. Development of enhancements, bug fixes, documentation, tutorial notebooks, … We have created a guide to help you start contributing to tsai. You can read it [here](https://github.com/timeseriesAI/tsai/blob/main/CONTRIBUTING.md). ## Enterprise support and consulting services: Want to make the most out of timeseriesAI/tsai in a professional setting? Let us help. Send us an email to learn more: info@timeseriesai.co ## Citing tsai If you use tsai in your research please use the following BibTeX entry: ``` text @Misc{tsai, author = {Ignacio Oguiza}, title = {tsai - A state-of-the-art deep learning library for time series and sequential data}, howpublished = {Github}, year = {2022}, url = {https://github.com/timeseriesAI/tsai} } ``` %prep %autosetup -n tsai-0.3.6 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-tsai -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot - 0.3.6-1 - Package Spec generated