%global _empty_manifest_terminate_build 0 Name: python-featuretools-tsfresh-primitives Version: 1.0.2 Release: 1 Summary: TSFresh primitives for featuretools License: MIT URL: https://github.com/alteryx/featuretools-tsfresh-primitives/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8e/54/9489bcfb8390a99e89c83fc8663966ae28a5d934d9e25868cb2fccdd9c35/featuretools_tsfresh_primitives-1.0.2.tar.gz BuildArch: noarch Requires: python3-tsfresh Requires: python3-pandas Requires: python3-featuretools %description # TSFresh Primitives

Tests PyPI Version PyPI Downloads


### Installation Install with pip: ```python python -m pip install "featuretools[tsfresh]" ``` ## Calculating Features In `tsfresh`, this is how you can calculate a feature. ```python from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation data = list(range(10)) param = [{'f_agg': 'mean', 'maxlag': 5}] agg_autocorrelation(data, param=param) ``` ```bash [('f_agg_"mean"__maxlag_5', 0.1717171717171717)] ``` With tsfresh primtives in `featuretools`, this is how you can calculate the same feature. ```python from featuretools.tsfresh import AggAutocorrelation data = list(range(10)) AggAutocorrelation(f_agg='mean', maxlag=5)(data) ``` ```bash 0.1717171717171717 ``` ## Combining Primitives In `featuretools`, this is how to combine tsfresh primitives with built-in or other installed primitives. ```python import featuretools as ft from featuretools.tsfresh import AggAutocorrelation, Mean entityset = ft.demo.load_mock_customer(return_entityset=True) agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)] feature_matrix, features = ft.dfs(entityset=entityset, target_dataframe_name='sessions', agg_primitives=agg_primitives) feature_matrix[[ 'MEAN(transactions.amount)', 'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)', ]].head() ``` ``` MEAN(transactions.amount) AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5) session_id 1 76.813125 0.044268 2 74.696000 -0.053110 3 88.600000 0.007520 4 64.557200 -0.034542 5 70.638182 -0.100571 ``` Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible. ```python feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head() ``` ``` customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5) session_id 1 0.011102 2 -0.001686 3 -0.010679 4 0.011204 5 -0.010679 ``` ## Built at Alteryx Innovation Labs Alteryx Innovation Labs %package -n python3-featuretools-tsfresh-primitives Summary: TSFresh primitives for featuretools Provides: python-featuretools-tsfresh-primitives BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-featuretools-tsfresh-primitives # TSFresh Primitives

Tests PyPI Version PyPI Downloads


### Installation Install with pip: ```python python -m pip install "featuretools[tsfresh]" ``` ## Calculating Features In `tsfresh`, this is how you can calculate a feature. ```python from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation data = list(range(10)) param = [{'f_agg': 'mean', 'maxlag': 5}] agg_autocorrelation(data, param=param) ``` ```bash [('f_agg_"mean"__maxlag_5', 0.1717171717171717)] ``` With tsfresh primtives in `featuretools`, this is how you can calculate the same feature. ```python from featuretools.tsfresh import AggAutocorrelation data = list(range(10)) AggAutocorrelation(f_agg='mean', maxlag=5)(data) ``` ```bash 0.1717171717171717 ``` ## Combining Primitives In `featuretools`, this is how to combine tsfresh primitives with built-in or other installed primitives. ```python import featuretools as ft from featuretools.tsfresh import AggAutocorrelation, Mean entityset = ft.demo.load_mock_customer(return_entityset=True) agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)] feature_matrix, features = ft.dfs(entityset=entityset, target_dataframe_name='sessions', agg_primitives=agg_primitives) feature_matrix[[ 'MEAN(transactions.amount)', 'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)', ]].head() ``` ``` MEAN(transactions.amount) AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5) session_id 1 76.813125 0.044268 2 74.696000 -0.053110 3 88.600000 0.007520 4 64.557200 -0.034542 5 70.638182 -0.100571 ``` Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible. ```python feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head() ``` ``` customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5) session_id 1 0.011102 2 -0.001686 3 -0.010679 4 0.011204 5 -0.010679 ``` ## Built at Alteryx Innovation Labs Alteryx Innovation Labs %package help Summary: Development documents and examples for featuretools-tsfresh-primitives Provides: python3-featuretools-tsfresh-primitives-doc %description help # TSFresh Primitives

Tests PyPI Version PyPI Downloads


### Installation Install with pip: ```python python -m pip install "featuretools[tsfresh]" ``` ## Calculating Features In `tsfresh`, this is how you can calculate a feature. ```python from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation data = list(range(10)) param = [{'f_agg': 'mean', 'maxlag': 5}] agg_autocorrelation(data, param=param) ``` ```bash [('f_agg_"mean"__maxlag_5', 0.1717171717171717)] ``` With tsfresh primtives in `featuretools`, this is how you can calculate the same feature. ```python from featuretools.tsfresh import AggAutocorrelation data = list(range(10)) AggAutocorrelation(f_agg='mean', maxlag=5)(data) ``` ```bash 0.1717171717171717 ``` ## Combining Primitives In `featuretools`, this is how to combine tsfresh primitives with built-in or other installed primitives. ```python import featuretools as ft from featuretools.tsfresh import AggAutocorrelation, Mean entityset = ft.demo.load_mock_customer(return_entityset=True) agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)] feature_matrix, features = ft.dfs(entityset=entityset, target_dataframe_name='sessions', agg_primitives=agg_primitives) feature_matrix[[ 'MEAN(transactions.amount)', 'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)', ]].head() ``` ``` MEAN(transactions.amount) AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5) session_id 1 76.813125 0.044268 2 74.696000 -0.053110 3 88.600000 0.007520 4 64.557200 -0.034542 5 70.638182 -0.100571 ``` Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible. ```python feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head() ``` ``` customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5) session_id 1 0.011102 2 -0.001686 3 -0.010679 4 0.011204 5 -0.010679 ``` ## Built at Alteryx Innovation Labs Alteryx Innovation Labs %prep %autosetup -n featuretools-tsfresh-primitives-1.0.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-featuretools-tsfresh-primitives -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot - 1.0.2-1 - Package Spec generated