%global _empty_manifest_terminate_build 0 Name: python-mngs Version: 0.4.0 Release: 1 Summary: For lazy python users (monogusa people in Japanse), especially in ML/DSP fields License: GPL3.0 URL: https://github.com/ywatanabe1989/mngs Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f2/95/0bc28b15ac436c49c9becb10049eddf3c0c94860908fbe74e94ca3d20afc/mngs-0.4.0.tar.gz BuildArch: noarch Requires: python3-chardet Requires: python3-GitPython Requires: python3-h5py Requires: python3-joblib Requires: python3-matplotlib Requires: python3-natsort Requires: python3-numpy Requires: python3-pandas Requires: python3-pymatreader Requires: python3-PyYAML Requires: python3-scipy Requires: python3-seaborn Requires: python3-sklearn Requires: python3-statsmodels Requires: python3-torch Requires: python3-xmltodict Requires: python3-openpyxl Requires: python3-obspy Requires: python3-pyro-ppl Requires: python3-torchaudio Requires: python3-scikit-learn Requires: python3-psutil Requires: python3-pyedflib %description ## Requirements ``` chardet GitPython h5py joblib matplotlib natsort numpy pandas pymatreader PyYAML scipy seaborn sklearn statsmodels torch xmltodict ``` ## Installation ``` bash $ pip install mngs or $ pip install git+https://github.com/ywatanabe1989/mngs.git@develop ``` ## mngs.general.save ``` python import mngs import numpy as np import matplotlib.pyplot as plt import pandas as pd ## numpy arr = np.arange(10) mngs.general.save(arr, 'spath.npy') ## pandas df = pd.DataFrame(arr) mngs.general.save(df, 'spath.csv') ## matplotlib fig, ax = plt.subplots() ax.plot(arr) mngs.general.save(fig, 'spath.png) ``` ## mngs.general.load ``` python import mngs arr = mngs.general.load('spath.npy') arr = mngs.general.load('spath.mat') df = mngs.general.load('spath.npy') yaml_dict = mngs.general.load('spath.yaml') hdf5_dict = mngs.general.load('spath.hdf5') ``` ## mngs.general.fix_seeds ``` python import mngs import os import random import numpy as np import torch mngs.general.fix_seeds(os=os, random=random, np=np, torch=torch, tf=None, seed=42) ``` ## mngs.general.tee ``` python import sys sys.stdout, sys.stderr = tee(sys) print("abc") # also wrriten in stdout print(1 / 0) # also wrriten in stderr ``` ## mngs.plt.configure_mpl ``` python configure_mpl( plt, dpi=100, figsize=(16.2, 10), figscale=1.0, fontsize=16, labelsize="same", legendfontsize="xx-small", tick_size="auto", tick_width="auto", hide_spines=False, ) ``` ## mngs.plt.ax_* - mngs.plt.ax_extend - mngs.plt.ax_scientific_notation - mngs.plt.ax_set_position ## mngs.ml.Reporter Now, classification task is available. ``` python reporter = mngs.ml.Reporter(sdir=log_dir) for i_fold in range(N_FOLDS): ... print("\n--- Metrics ---\n") reporter.calc_metrics( T_tes, pred_class_tes, pred_proba_tes, labels=[class_0, class_1, class_2], i_fold=i_fold, ) print("\n---------------\n") reporter.summarize() reporter.save() ``` The above lines makes reportes and figures. ``` bash $ tree $log_dir ├── aucs.csv ├── bACCs.csv ├── balanced_accs.csv ├── clf_reports.csv ├── conf_mat │   ├── conf_mats.csv │   ├── fold#0.png │   ├── fold#1.png │   ├── fold#2.png │   └── overall_sum.png ├── mccs.csv ├── pre_rec_curves │   ├── fold#0.png │   ├── fold#1.png │   └── fold#2.png └── roc_curves ├── fold#0.png ├── fold#1.png └── fold#2.png ``` %package -n python3-mngs Summary: For lazy python users (monogusa people in Japanse), especially in ML/DSP fields Provides: python-mngs BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-mngs ## Requirements ``` chardet GitPython h5py joblib matplotlib natsort numpy pandas pymatreader PyYAML scipy seaborn sklearn statsmodels torch xmltodict ``` ## Installation ``` bash $ pip install mngs or $ pip install git+https://github.com/ywatanabe1989/mngs.git@develop ``` ## mngs.general.save ``` python import mngs import numpy as np import matplotlib.pyplot as plt import pandas as pd ## numpy arr = np.arange(10) mngs.general.save(arr, 'spath.npy') ## pandas df = pd.DataFrame(arr) mngs.general.save(df, 'spath.csv') ## matplotlib fig, ax = plt.subplots() ax.plot(arr) mngs.general.save(fig, 'spath.png) ``` ## mngs.general.load ``` python import mngs arr = mngs.general.load('spath.npy') arr = mngs.general.load('spath.mat') df = mngs.general.load('spath.npy') yaml_dict = mngs.general.load('spath.yaml') hdf5_dict = mngs.general.load('spath.hdf5') ``` ## mngs.general.fix_seeds ``` python import mngs import os import random import numpy as np import torch mngs.general.fix_seeds(os=os, random=random, np=np, torch=torch, tf=None, seed=42) ``` ## mngs.general.tee ``` python import sys sys.stdout, sys.stderr = tee(sys) print("abc") # also wrriten in stdout print(1 / 0) # also wrriten in stderr ``` ## mngs.plt.configure_mpl ``` python configure_mpl( plt, dpi=100, figsize=(16.2, 10), figscale=1.0, fontsize=16, labelsize="same", legendfontsize="xx-small", tick_size="auto", tick_width="auto", hide_spines=False, ) ``` ## mngs.plt.ax_* - mngs.plt.ax_extend - mngs.plt.ax_scientific_notation - mngs.plt.ax_set_position ## mngs.ml.Reporter Now, classification task is available. ``` python reporter = mngs.ml.Reporter(sdir=log_dir) for i_fold in range(N_FOLDS): ... print("\n--- Metrics ---\n") reporter.calc_metrics( T_tes, pred_class_tes, pred_proba_tes, labels=[class_0, class_1, class_2], i_fold=i_fold, ) print("\n---------------\n") reporter.summarize() reporter.save() ``` The above lines makes reportes and figures. ``` bash $ tree $log_dir ├── aucs.csv ├── bACCs.csv ├── balanced_accs.csv ├── clf_reports.csv ├── conf_mat │   ├── conf_mats.csv │   ├── fold#0.png │   ├── fold#1.png │   ├── fold#2.png │   └── overall_sum.png ├── mccs.csv ├── pre_rec_curves │   ├── fold#0.png │   ├── fold#1.png │   └── fold#2.png └── roc_curves ├── fold#0.png ├── fold#1.png └── fold#2.png ``` %package help Summary: Development documents and examples for mngs Provides: python3-mngs-doc %description help ## Requirements ``` chardet GitPython h5py joblib matplotlib natsort numpy pandas pymatreader PyYAML scipy seaborn sklearn statsmodels torch xmltodict ``` ## Installation ``` bash $ pip install mngs or $ pip install git+https://github.com/ywatanabe1989/mngs.git@develop ``` ## mngs.general.save ``` python import mngs import numpy as np import matplotlib.pyplot as plt import pandas as pd ## numpy arr = np.arange(10) mngs.general.save(arr, 'spath.npy') ## pandas df = pd.DataFrame(arr) mngs.general.save(df, 'spath.csv') ## matplotlib fig, ax = plt.subplots() ax.plot(arr) mngs.general.save(fig, 'spath.png) ``` ## mngs.general.load ``` python import mngs arr = mngs.general.load('spath.npy') arr = mngs.general.load('spath.mat') df = mngs.general.load('spath.npy') yaml_dict = mngs.general.load('spath.yaml') hdf5_dict = mngs.general.load('spath.hdf5') ``` ## mngs.general.fix_seeds ``` python import mngs import os import random import numpy as np import torch mngs.general.fix_seeds(os=os, random=random, np=np, torch=torch, tf=None, seed=42) ``` ## mngs.general.tee ``` python import sys sys.stdout, sys.stderr = tee(sys) print("abc") # also wrriten in stdout print(1 / 0) # also wrriten in stderr ``` ## mngs.plt.configure_mpl ``` python configure_mpl( plt, dpi=100, figsize=(16.2, 10), figscale=1.0, fontsize=16, labelsize="same", legendfontsize="xx-small", tick_size="auto", tick_width="auto", hide_spines=False, ) ``` ## mngs.plt.ax_* - mngs.plt.ax_extend - mngs.plt.ax_scientific_notation - mngs.plt.ax_set_position ## mngs.ml.Reporter Now, classification task is available. ``` python reporter = mngs.ml.Reporter(sdir=log_dir) for i_fold in range(N_FOLDS): ... print("\n--- Metrics ---\n") reporter.calc_metrics( T_tes, pred_class_tes, pred_proba_tes, labels=[class_0, class_1, class_2], i_fold=i_fold, ) print("\n---------------\n") reporter.summarize() reporter.save() ``` The above lines makes reportes and figures. ``` bash $ tree $log_dir ├── aucs.csv ├── bACCs.csv ├── balanced_accs.csv ├── clf_reports.csv ├── conf_mat │   ├── conf_mats.csv │   ├── fold#0.png │   ├── fold#1.png │   ├── fold#2.png │   └── overall_sum.png ├── mccs.csv ├── pre_rec_curves │   ├── fold#0.png │   ├── fold#1.png │   └── fold#2.png └── roc_curves ├── fold#0.png ├── fold#1.png └── fold#2.png ``` %prep %autosetup -n mngs-0.4.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-mngs -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu May 18 2023 Python_Bot - 0.4.0-1 - Package Spec generated