%global _empty_manifest_terminate_build 0 Name: python-a3cosmos-gas-evolution Version: 1.1.1 Release: 1 Summary: A Python Package for Galaxy Cold Molecular Gas and Star Formation Evolution Equations. License: BSD License URL: https://sites.google.com/view/a3cosmos Source0: https://mirrors.nju.edu.cn/pypi/web/packages/82/b2/fdc2abac6d63eda39806e5b41dcb8cfd59b5cf99189f89dd0d287065c1f7/a3cosmos_gas_evolution-1.1.1.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-astropy Requires: python3-scipy Requires: python3-matplotlib Requires: python3-funcsigs %description This Python package provides functions to calculate a galaxy's cold molecular gas mass to stellar mass ratio (gas fraction), cold molecular gas depletion time and galaxy main-sequence star formation rate. The motivation is that the evolution of star-forming galaxies' star formation rate (SFR) and cold molecular gas reservoir have now been reasonably well measured out to very high redshift (z~6), from present time up to as early as one giga-year after the Big Bang (Madau & Dickinson 2014; Genzel et al. 2015; Scoville et al. 2016, 2017; Tacconi et al. 2018; Liu et al. 2018, 2019). These studies have found that the majority of galaxies have a steady and parametrizable evolution in their stellar mass growth, SFR, and molecular gas mass (or molecular gas to total baryon fraction, i.e., gas fraction). These evolution functions have provided crucial constraints to cosmological simulations of dark matter halo evolution and the semi-analytic modeling of the simulated galaxy evolution in the dark matter halo (e.g., Popping et al. 2014ab, 2016, 2017, 2019ab). However, currently there are many parametrizations (or we say "equations") in the literature and each has its own limitation which is not very well aware by the generic users. Therefore, we provide this Python package which contains as many galaxy gas, dust, star formation and stellar mass evolution equations as possible for easier comparison and study. %package -n python3-a3cosmos-gas-evolution Summary: A Python Package for Galaxy Cold Molecular Gas and Star Formation Evolution Equations. Provides: python-a3cosmos-gas-evolution BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-a3cosmos-gas-evolution This Python package provides functions to calculate a galaxy's cold molecular gas mass to stellar mass ratio (gas fraction), cold molecular gas depletion time and galaxy main-sequence star formation rate. The motivation is that the evolution of star-forming galaxies' star formation rate (SFR) and cold molecular gas reservoir have now been reasonably well measured out to very high redshift (z~6), from present time up to as early as one giga-year after the Big Bang (Madau & Dickinson 2014; Genzel et al. 2015; Scoville et al. 2016, 2017; Tacconi et al. 2018; Liu et al. 2018, 2019). These studies have found that the majority of galaxies have a steady and parametrizable evolution in their stellar mass growth, SFR, and molecular gas mass (or molecular gas to total baryon fraction, i.e., gas fraction). These evolution functions have provided crucial constraints to cosmological simulations of dark matter halo evolution and the semi-analytic modeling of the simulated galaxy evolution in the dark matter halo (e.g., Popping et al. 2014ab, 2016, 2017, 2019ab). However, currently there are many parametrizations (or we say "equations") in the literature and each has its own limitation which is not very well aware by the generic users. Therefore, we provide this Python package which contains as many galaxy gas, dust, star formation and stellar mass evolution equations as possible for easier comparison and study. %package help Summary: Development documents and examples for a3cosmos-gas-evolution Provides: python3-a3cosmos-gas-evolution-doc %description help This Python package provides functions to calculate a galaxy's cold molecular gas mass to stellar mass ratio (gas fraction), cold molecular gas depletion time and galaxy main-sequence star formation rate. The motivation is that the evolution of star-forming galaxies' star formation rate (SFR) and cold molecular gas reservoir have now been reasonably well measured out to very high redshift (z~6), from present time up to as early as one giga-year after the Big Bang (Madau & Dickinson 2014; Genzel et al. 2015; Scoville et al. 2016, 2017; Tacconi et al. 2018; Liu et al. 2018, 2019). These studies have found that the majority of galaxies have a steady and parametrizable evolution in their stellar mass growth, SFR, and molecular gas mass (or molecular gas to total baryon fraction, i.e., gas fraction). These evolution functions have provided crucial constraints to cosmological simulations of dark matter halo evolution and the semi-analytic modeling of the simulated galaxy evolution in the dark matter halo (e.g., Popping et al. 2014ab, 2016, 2017, 2019ab). However, currently there are many parametrizations (or we say "equations") in the literature and each has its own limitation which is not very well aware by the generic users. Therefore, we provide this Python package which contains as many galaxy gas, dust, star formation and stellar mass evolution equations as possible for easier comparison and study. %prep %autosetup -n a3cosmos-gas-evolution-1.1.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-a3cosmos-gas-evolution -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 29 2023 Python_Bot - 1.1.1-1 - Package Spec generated