%global _empty_manifest_terminate_build 0 Name: python-ssb-ipython-kernels Version: 0.3.3 Release: 1 Summary: Jupyter kernels for working with dapla services License: MIT URL: https://github.com/statisticsnorway/dapla-ipython-kernels Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c1/50/0dbd3944013356007b66c31ca1102cd26dbe060e7fd02b7699fa4bd1146d/ssb-ipython-kernels-0.3.3.tar.gz BuildArch: noarch Requires: python3-ipython Requires: python3-pyspark Requires: python3-jupyterhub Requires: python3-oauthenticator Requires: python3-requests Requires: python3-requests-cache Requires: python3-responses Requires: python3-ipykernel Requires: python3-notebook Requires: python3-tornado Requires: python3-gcsfs Requires: python3-pyarrow Requires: python3-pandas Requires: python3-google-auth Requires: python3-google-auth-oauthlib Requires: python3-ipywidgets Requires: python3-pyjwt %description # dapla-ipython-kernels Python module for use within Jupyter notebooks. It contains kernel extensions for integrating with Apache Spark, Google Cloud Storage and custom dapla services. [![PyPI version](https://img.shields.io/pypi/v/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) [![Status](https://img.shields.io/pypi/status/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) [![License](https://img.shields.io/pypi/l/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) ## Getting Started Install the module from pip: ```bash # pip pip install dapla-ipython-kernels ``` Now the module is ready to use with a single import: ```python import dapla as dp ``` This module is targeted to python kernels in Jupyter, but it may work in any IPython environment. It also depends on a number of custom services, e.g. [the custom auth service](dapla/jupyterextensions/authextension.py) To test, simply create any Pandas dataframe. This can be stored in Google Cloud Storage at a specific path: ```python import pandas as pd import dapla as dp data = { 'apples': [3, 2, 0, 1], 'oranges': [0, 3, 7, 2] } # Create pandas DataFrame purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David']) # Write pandas DataFrame to parquet dp.write_pandas(purchases, '/testfolder/python/purchases', valuation='INTERNAL', state= 'INPUT') ``` Conversely, parquet files can be read from a path directly into a pandas DataFrame. ```python import dapla as dp # Read path into pandas dataframe purchases = dp.read_pandas('/testfolder/python/purchases') ``` ## Other functions Since the python module integrates with Google Cloud Storage and custom dapla services, some other functions exist as well: ```python import dapla as dp # List path by prefix dp.show('/testfolder/python') ``` | Path | Timestamp | | ----------------------------- | ------------- | | /testfolder/python/purchases | 1593120298095 | | /testfolder/python/other | 1593157667793 | ```python import dapla as dp # Show file details dp.details('/testfolder/python/purchases') ``` | Size | Name | | ----- | -------------------------------------- | | 2908 | 42331105444c9ca0ce049ef6de7160.parquet | See also the [example notebook](examples/dapla_notebook.ipynb) written for Jupyter. ## Deploy to SSB jupyter ### Release version pypi Make sure you have a clean master branch.
run `make bump-version-patch` - this will update version and commit to git.
run `git push --tags origin master` - important to have --tags to make it auto deploy to pypi If everything was ok we should see a new release her: https://pypi.org/project/ssb-ipython-kernels/ ### Update jupyter image on staging * Bump ssb-ipython-kernels in dapla-gcp-jupyter [Dockerfile](https://github.com/statisticsnorway/dapla-gcp-jupyter/blob/master/jupyter/Dockerfile)
* Example of previous [update]( https://github.com/statisticsnorway/dapla-gcp-jupyter/commit/8027dc1cbad15dadb1347fe452c78711463e9f3c)
* Check new tag from build on [azure piplines](https://dev.azure.com/statisticsnorway/Dapla/_build/results?buildId=11202&view=logs&jobId=2143f898-48de-5476-aeb8-70e74f8d7c33&j=667c30d6-a912-540e-a406-35cd05a9f751&t=fb539ba6-e537-5346-19c8-c46f7dd4b185) * update [platform dev jupyter-kubespawner-config](https://github.com/statisticsnorway/platform-dev/blob/master/flux/staging-bip-app/dapla-spark/jupyter/kubespawner-config.yaml) with tag * [Example](https://github.com/statisticsnorway/platform-dev/commit/b063b830deb6bc0d6a485d7f08fda473cf340ff6) For now, we have to delete the running jupyer hub instance to make it use this new config %package -n python3-ssb-ipython-kernels Summary: Jupyter kernels for working with dapla services Provides: python-ssb-ipython-kernels BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-ssb-ipython-kernels # dapla-ipython-kernels Python module for use within Jupyter notebooks. It contains kernel extensions for integrating with Apache Spark, Google Cloud Storage and custom dapla services. [![PyPI version](https://img.shields.io/pypi/v/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) [![Status](https://img.shields.io/pypi/status/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) [![License](https://img.shields.io/pypi/l/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) ## Getting Started Install the module from pip: ```bash # pip pip install dapla-ipython-kernels ``` Now the module is ready to use with a single import: ```python import dapla as dp ``` This module is targeted to python kernels in Jupyter, but it may work in any IPython environment. It also depends on a number of custom services, e.g. [the custom auth service](dapla/jupyterextensions/authextension.py) To test, simply create any Pandas dataframe. This can be stored in Google Cloud Storage at a specific path: ```python import pandas as pd import dapla as dp data = { 'apples': [3, 2, 0, 1], 'oranges': [0, 3, 7, 2] } # Create pandas DataFrame purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David']) # Write pandas DataFrame to parquet dp.write_pandas(purchases, '/testfolder/python/purchases', valuation='INTERNAL', state= 'INPUT') ``` Conversely, parquet files can be read from a path directly into a pandas DataFrame. ```python import dapla as dp # Read path into pandas dataframe purchases = dp.read_pandas('/testfolder/python/purchases') ``` ## Other functions Since the python module integrates with Google Cloud Storage and custom dapla services, some other functions exist as well: ```python import dapla as dp # List path by prefix dp.show('/testfolder/python') ``` | Path | Timestamp | | ----------------------------- | ------------- | | /testfolder/python/purchases | 1593120298095 | | /testfolder/python/other | 1593157667793 | ```python import dapla as dp # Show file details dp.details('/testfolder/python/purchases') ``` | Size | Name | | ----- | -------------------------------------- | | 2908 | 42331105444c9ca0ce049ef6de7160.parquet | See also the [example notebook](examples/dapla_notebook.ipynb) written for Jupyter. ## Deploy to SSB jupyter ### Release version pypi Make sure you have a clean master branch.
run `make bump-version-patch` - this will update version and commit to git.
run `git push --tags origin master` - important to have --tags to make it auto deploy to pypi If everything was ok we should see a new release her: https://pypi.org/project/ssb-ipython-kernels/ ### Update jupyter image on staging * Bump ssb-ipython-kernels in dapla-gcp-jupyter [Dockerfile](https://github.com/statisticsnorway/dapla-gcp-jupyter/blob/master/jupyter/Dockerfile)
* Example of previous [update]( https://github.com/statisticsnorway/dapla-gcp-jupyter/commit/8027dc1cbad15dadb1347fe452c78711463e9f3c)
* Check new tag from build on [azure piplines](https://dev.azure.com/statisticsnorway/Dapla/_build/results?buildId=11202&view=logs&jobId=2143f898-48de-5476-aeb8-70e74f8d7c33&j=667c30d6-a912-540e-a406-35cd05a9f751&t=fb539ba6-e537-5346-19c8-c46f7dd4b185) * update [platform dev jupyter-kubespawner-config](https://github.com/statisticsnorway/platform-dev/blob/master/flux/staging-bip-app/dapla-spark/jupyter/kubespawner-config.yaml) with tag * [Example](https://github.com/statisticsnorway/platform-dev/commit/b063b830deb6bc0d6a485d7f08fda473cf340ff6) For now, we have to delete the running jupyer hub instance to make it use this new config %package help Summary: Development documents and examples for ssb-ipython-kernels Provides: python3-ssb-ipython-kernels-doc %description help # dapla-ipython-kernels Python module for use within Jupyter notebooks. It contains kernel extensions for integrating with Apache Spark, Google Cloud Storage and custom dapla services. [![PyPI version](https://img.shields.io/pypi/v/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) [![Status](https://img.shields.io/pypi/status/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) [![License](https://img.shields.io/pypi/l/ssb-ipython-kernels.svg)](https://pypi.python.org/pypi/ssb-ipython-kernels/) ## Getting Started Install the module from pip: ```bash # pip pip install dapla-ipython-kernels ``` Now the module is ready to use with a single import: ```python import dapla as dp ``` This module is targeted to python kernels in Jupyter, but it may work in any IPython environment. It also depends on a number of custom services, e.g. [the custom auth service](dapla/jupyterextensions/authextension.py) To test, simply create any Pandas dataframe. This can be stored in Google Cloud Storage at a specific path: ```python import pandas as pd import dapla as dp data = { 'apples': [3, 2, 0, 1], 'oranges': [0, 3, 7, 2] } # Create pandas DataFrame purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David']) # Write pandas DataFrame to parquet dp.write_pandas(purchases, '/testfolder/python/purchases', valuation='INTERNAL', state= 'INPUT') ``` Conversely, parquet files can be read from a path directly into a pandas DataFrame. ```python import dapla as dp # Read path into pandas dataframe purchases = dp.read_pandas('/testfolder/python/purchases') ``` ## Other functions Since the python module integrates with Google Cloud Storage and custom dapla services, some other functions exist as well: ```python import dapla as dp # List path by prefix dp.show('/testfolder/python') ``` | Path | Timestamp | | ----------------------------- | ------------- | | /testfolder/python/purchases | 1593120298095 | | /testfolder/python/other | 1593157667793 | ```python import dapla as dp # Show file details dp.details('/testfolder/python/purchases') ``` | Size | Name | | ----- | -------------------------------------- | | 2908 | 42331105444c9ca0ce049ef6de7160.parquet | See also the [example notebook](examples/dapla_notebook.ipynb) written for Jupyter. ## Deploy to SSB jupyter ### Release version pypi Make sure you have a clean master branch.
run `make bump-version-patch` - this will update version and commit to git.
run `git push --tags origin master` - important to have --tags to make it auto deploy to pypi If everything was ok we should see a new release her: https://pypi.org/project/ssb-ipython-kernels/ ### Update jupyter image on staging * Bump ssb-ipython-kernels in dapla-gcp-jupyter [Dockerfile](https://github.com/statisticsnorway/dapla-gcp-jupyter/blob/master/jupyter/Dockerfile)
* Example of previous [update]( https://github.com/statisticsnorway/dapla-gcp-jupyter/commit/8027dc1cbad15dadb1347fe452c78711463e9f3c)
* Check new tag from build on [azure piplines](https://dev.azure.com/statisticsnorway/Dapla/_build/results?buildId=11202&view=logs&jobId=2143f898-48de-5476-aeb8-70e74f8d7c33&j=667c30d6-a912-540e-a406-35cd05a9f751&t=fb539ba6-e537-5346-19c8-c46f7dd4b185) * update [platform dev jupyter-kubespawner-config](https://github.com/statisticsnorway/platform-dev/blob/master/flux/staging-bip-app/dapla-spark/jupyter/kubespawner-config.yaml) with tag * [Example](https://github.com/statisticsnorway/platform-dev/commit/b063b830deb6bc0d6a485d7f08fda473cf340ff6) For now, we have to delete the running jupyer hub instance to make it use this new config %prep %autosetup -n ssb-ipython-kernels-0.3.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-ssb-ipython-kernels -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 29 2023 Python_Bot - 0.3.3-1 - Package Spec generated