%global _empty_manifest_terminate_build 0 Name: python-lazybox Version: 0.0.2.5 Release: 1 Summary: A description of your project License: MIT License URL: https://github.com/limiteinductive/Databox/tree/main/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6d/9c/05b589abb45da148071dcbe8f6cbf72c914923cc3d0d8af7ad8810a28ecc/lazybox-0.0.2.5.tar.gz BuildArch: noarch Requires: python3-pip Requires: python3-packaging Requires: python3-fastai Requires: python3-plum-dispatch Requires: python3-Levenshtein Requires: python3-fuzzywuzzy %description # LazyBox > A user friendly API to jump-start your Deep Learning project based on Fastai. The library is still in early development, but a lot of new features will be added in future [ ] Support for non-image Datasets [ ] Import NN architecture from the timm library [ ] Make it better ## Install `pip install lazybox` ## How to use Let's go through a typical workflow for a DeepLearning task. Let's download this Dataset on Kaggle: https://www.kaggle.com/tongpython/cat-and-dog which are images of cat and dogs. ``` # we lazy folks only use wild imports from lazybox.all import * path = Path('test_dataset') path.find('archive') ``` 'test_dataset/archive.zip' Let's decompress this archive %package -n python3-lazybox Summary: A description of your project Provides: python-lazybox BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-lazybox # LazyBox > A user friendly API to jump-start your Deep Learning project based on Fastai. The library is still in early development, but a lot of new features will be added in future [ ] Support for non-image Datasets [ ] Import NN architecture from the timm library [ ] Make it better ## Install `pip install lazybox` ## How to use Let's go through a typical workflow for a DeepLearning task. Let's download this Dataset on Kaggle: https://www.kaggle.com/tongpython/cat-and-dog which are images of cat and dogs. ``` # we lazy folks only use wild imports from lazybox.all import * path = Path('test_dataset') path.find('archive') ``` 'test_dataset/archive.zip' Let's decompress this archive %package help Summary: Development documents and examples for lazybox Provides: python3-lazybox-doc %description help # LazyBox > A user friendly API to jump-start your Deep Learning project based on Fastai. The library is still in early development, but a lot of new features will be added in future [ ] Support for non-image Datasets [ ] Import NN architecture from the timm library [ ] Make it better ## Install `pip install lazybox` ## How to use Let's go through a typical workflow for a DeepLearning task. Let's download this Dataset on Kaggle: https://www.kaggle.com/tongpython/cat-and-dog which are images of cat and dogs. ``` # we lazy folks only use wild imports from lazybox.all import * path = Path('test_dataset') path.find('archive') ``` 'test_dataset/archive.zip' Let's decompress this archive %prep %autosetup -n lazybox-0.0.2.5 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-lazybox -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 29 2023 Python_Bot - 0.0.2.5-1 - Package Spec generated