%global _empty_manifest_terminate_build 0 Name: python-gym-contin Version: 1.5.0 Release: 1 Summary: A OpenAI Gym Env for continuous actions License: MIT URL: https://pypi.org/project/gym-contin/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/db/f9/4e01859a5d158f2bd94de2dcedecf801aa7095d8af2494179fca39fc5ee1/gym_contin-1.5.0.tar.gz BuildArch: noarch Requires: python3-gym %description # Gym-style API The domain features a continuos state and a dicrete action space. The environment initializes: - cross-sectional dataset with variables X_a, X_s, Y and N observations; - logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2; The agent: - sees a patient (sample observation); - predict his risk of admission \rho, using initialized parameters - if \rho < 1/2: - do not intervene on X_a, which stays the same - else: - sample an action a in [0,1] - compute g(a, X_a) = newX_a - intervene on X_a by updating it to newX_a - give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values (shouldn't I fit a new logit-link? parameters are now diff?) # To install - git clone https://github.com/claudia-viaro/gym-contin.git - cd gym-contin - !pip install gym-contin - import gym - import gym_contin - env =gym.make('contin-v0') # To change version - change version to, e.g., 1.0.7 from setup.py file - git clone https://github.com/claudia-viaro/gym-contin.git - cd gym-contin - python setup.py sdist bdist_wheel - twine check dist/* - twine upload --repository-url https://upload.pypi.org/legacy/ dist/* %package -n python3-gym-contin Summary: A OpenAI Gym Env for continuous actions Provides: python-gym-contin BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-gym-contin # Gym-style API The domain features a continuos state and a dicrete action space. The environment initializes: - cross-sectional dataset with variables X_a, X_s, Y and N observations; - logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2; The agent: - sees a patient (sample observation); - predict his risk of admission \rho, using initialized parameters - if \rho < 1/2: - do not intervene on X_a, which stays the same - else: - sample an action a in [0,1] - compute g(a, X_a) = newX_a - intervene on X_a by updating it to newX_a - give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values (shouldn't I fit a new logit-link? parameters are now diff?) # To install - git clone https://github.com/claudia-viaro/gym-contin.git - cd gym-contin - !pip install gym-contin - import gym - import gym_contin - env =gym.make('contin-v0') # To change version - change version to, e.g., 1.0.7 from setup.py file - git clone https://github.com/claudia-viaro/gym-contin.git - cd gym-contin - python setup.py sdist bdist_wheel - twine check dist/* - twine upload --repository-url https://upload.pypi.org/legacy/ dist/* %package help Summary: Development documents and examples for gym-contin Provides: python3-gym-contin-doc %description help # Gym-style API The domain features a continuos state and a dicrete action space. The environment initializes: - cross-sectional dataset with variables X_a, X_s, Y and N observations; - logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2; The agent: - sees a patient (sample observation); - predict his risk of admission \rho, using initialized parameters - if \rho < 1/2: - do not intervene on X_a, which stays the same - else: - sample an action a in [0,1] - compute g(a, X_a) = newX_a - intervene on X_a by updating it to newX_a - give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values (shouldn't I fit a new logit-link? parameters are now diff?) # To install - git clone https://github.com/claudia-viaro/gym-contin.git - cd gym-contin - !pip install gym-contin - import gym - import gym_contin - env =gym.make('contin-v0') # To change version - change version to, e.g., 1.0.7 from setup.py file - git clone https://github.com/claudia-viaro/gym-contin.git - cd gym-contin - python setup.py sdist bdist_wheel - twine check dist/* - twine upload --repository-url https://upload.pypi.org/legacy/ dist/* %prep %autosetup -n gym-contin-1.5.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-gym-contin -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 1.5.0-1 - Package Spec generated