%global _empty_manifest_terminate_build 0 Name: python-cane Version: 2.3.2 Release: 1 Summary: Cane - Categorical Attribute traNsformation Environment License: MIT URL: https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-Environment Source0: https://mirrors.nju.edu.cn/pypi/web/packages/39/98/5b4793d146e31d00782341bef2440395f2ceef1c73db310ee5094590cfdf/cane-2.3.2.tar.gz BuildArch: noarch %description # Cane - Categorical Attribute traNsformation Environment [![Downloads](https://pepy.tech/badge/cane)](https://pepy.tech/project/cane) [![Downloads](https://pepy.tech/badge/cane/month)](https://pepy.tech/project/cane) [![Downloads](https://pepy.tech/badge/cane/week)](https://pepy.tech/project/cane) CANE is a simpler but powerful preprocessing method for machine learning. At the moment offers some preprocessing methods: --> The Percentage Categorical Pruned (PCP) merges all least frequent levels (summing up to "perc" percent) into a single level as presented in (), which, for example, can be "Others" category. It can be useful when dealing with several amounts of categorical information (e.g., city data). An example of this can be viewed by the following pdf:

View PDF.

Which the 1,000 highest frequency values (decreasing order) for the user city attribute for the TEST traffic data (which contains a total of 10,690 levels). For this attribute and when , PCP selects only the most frequent 688 levels (dashed vertical line) merging the other 10,002 infrequent levels into the "Others" label. This method results in 689 binary inputs, which is much less than the 10690 binary inputs required by the standard one-hot transform (reduction of percentage points). --> The Inverse Document Frequency (IDF) codifies the categorical levels into frequency values, where the closer to 0 means, the more frequent it is (). --> Implementation of a simpler One-Hot-Encoding method. --> Minmax and Standard scaler (based on sklearn functions) with column selection and multicore support. Also, it is possible to apply these transformations to specific columns only instead of the full dataset (follow the example). However it only works with numerical data (e.g., MSE, decision scores) --> You can also provide a custom scaler version of your own! (check example) --> Use IDF with spark dataframes Future Function ideas: -- MultiColumn scale (based on the implementation of IDF and PCP) Scaling of IDF values (normalized IDF) # Installation To install this package please run the following command ``` cmd pip install cane ``` # New Version 2.3: [x] - PCP with spark dataframes [x] - Improvements in the example file and readme [x] - New Citation # Suggestions and feedback Any feedback will be appreciated. For questions and other suggestions contact luis.matos@dsi.uminho.pt Found any bugs? Post Them on the github page of the project! (https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-Environment) Thanks for the support! # Citation To cite this module please use: ``` @article{MATOS2022100359, author = {Lu{\'\i}s Miguel Matos and Jo{\~a}o Azevedo and Arthur Matta and Andr{\'e} Pilastri and Paulo Cortez and Rui Mendes}, doi = {https://doi.org/10.1016/j.simpa.2022.100359}, issn = {2665-9638}, journal = {Software Impacts}, keywords = {Data preprocessing, CANE, Python programming language, Machine learning}, pages = {100359}, title = {Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing}, url = {https://www.sciencedirect.com/science/article/pii/S2665963822000720}, year = {2022}, bdsk-url-1 = {https://www.sciencedirect.com/science/article/pii/S2665963822000720}, bdsk-url-2 = {https://doi.org/10.1016/j.simpa.2022.100359}} ``` # Example ``` python import pandas as pd import cane import timeit import numpy as np x = [k for s in ([k] * n for k, n in [('a', 70000), ('b', 50000), ('c', 30000), ('d', 10000), ('e', 1000)]) for k in s] df = pd.DataFrame({f'x{i}' : x for i in range(1, 130)}) dataPCP = cane.pcp(df) # uses the PCP method and only 1 core with perc == 0.05 for all columns dataPCP = cane.pcp(df, n_coresJob=2) # uses the PCP method and only 2 cores for all columns dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False) # With Progress Bar for all columns dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"]) # With Progress Bar and specific columns #dicionary with the transformed data dataPCP = cane.pcp(df) dicionary = cane.PCPDictionary(dataset = dataPCP, columnsUse = dataPCP.columns, targetColumn = None) #no target feature to avoid going into dictionary print(dicionary) dataIDF = cane.idf(df) # uses the IDF method and only 1 core for all columns dataIDF = cane.idf(df, n_coresJob=2) # uses the IDF method and only 2 core for all columns dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False) # With Progress Bar for all columns dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"]) # specific columns dataIDF = cane.idf_multicolumn(df, columns_use = ["x1","x2"]) # aplication of specific multicolumn setting IDF idfDicionary = cane.idfDictionary(Original = df, Transformed = dataIDF, columns_use = ["x1","x2"]) #following the example above of the 2 columns dataH = cane.one_hot(df) # without a column prefixer dataH2 = cane.one_hot(df, column_prefix='column') # it will use the original column name prefix # (useful for when dealing with id number columns) dataH3 = cane.one_hot(df, column_prefix='customColName') # it will use a custom prefix defined by # the value of the column_prefix dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2) # it will use the original column name prefix # (useful for when dealing with id number columns) # with 2 cores dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2 ,disableLoadBar = False) # With Progress Bar Active with 2 cores dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2 ,disableLoadBar = False,columns_use = ["x1","x2"]) # With Progress Bar specific columns! #specific example with multicolumn x2 = [k for s in ([k] * n for k, n in [('a', 50), ('b', 10), ('c', 20), ('d', 15), ('e', 5)]) for k in s] x3 = [k for s in ([k] * n for k, n in [('a', 40), ('b', 20), ('c', 1), ('d', 1), ('e', 38)]) for k in s] df2 = pd.concat([pd.DataFrame({f'x{i}' : x2 for i in range(1, 3)}),pd.DataFrame({f'y{i}' : x3 for i in range(1, 3)})], axis=1) dataPCP = cane.pcp(df2, n_coresJob=2,disableLoadBar = False) print("normal PCP \n",dataPCP) dataPCP2 = cane.pcp_multicolumn(df2, columns_use = ["x1","y1"]) # aplication of specific multicolumn setting PCP print("multicolumn PCP \n",dataPCP2) dataIDF = cane.idf(df2, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","y1"]) # specific columns print("normal idf \n",dataIDF) dataIDF2 = cane.idf_multicolumn(df2, columns_use = ["x1","y1"]) # aplication of specific multicolumn setting IDF print("multicolumn idf \n",dataIDF2) #Time Measurement in 10 runs print("Time Measurement in 10 runs (unicore)") OT = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=1),number = 10) IT = timeit.timeit(lambda:cane.idf(df),number = 10) PT = timeit.timeit(lambda:cane.pcp(df),number = 10) print("One-Hot Time:",OT) print("IDF Time:",IT) print("PCP Time:",PT) #Time Measurement in 10 runs (multicore) print("Time Measurement in 10 runs (multicore)") OTM = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=10),number = 10) ITM = timeit.timeit(lambda:cane.idf(df,n_coresJob=10),number = 10) PTM = timeit.timeit(lambda:cane.pcp(df,n_coresJob=10),number = 10) print("One-Hot Time Multicore:",OTM) print("IDF Time Multicore:",ITM) print("PCP Time Multicore:",PTM) # IDF with pyspark configs import cane from pyspark.sql import SparkSession #Create PySpark SparkSession spark = SparkSession.builder.getOrCreate() #Create PySpark DataFrame from Pandas sparkDF=spark.createDataFrame(df) cols = sparkDF.columns DFIDF, idf = cane.spark_idf_multicolumn(sparkDF, cols) print(DFIDF.show(20)) dataIDF = cane.idf(df) #check if it is correct: print(dataIDF.equals(DFIDF.toPandas())) #equals means correct for both pandas version and original #PCP with pyspark configs import cane from pyspark.sql import SparkSession #Create PySpark SparkSession spark = SparkSession.builder.getOrCreate() #Create PySpark DataFrame from Pandas sparkDF=spark.createDataFrame(df) cols = sparkDF.columns DFPCP, pcp = cane.spark_pcp(sparkDF, cols, 0.05, "Others") DFPCP.show(20) #check if it is correct: dataPCP = cane.pcp(df) print(dataPCP.equals(DFPCP.toPandas())) #equals means correct for both pandas version and original ``` # Scaler Example with cane These examples present the usage of cane with the standard methods (standard scaler e min max scaler). Also, it is presented how to implement a custom scaler function of your own with cane! ``` python #New Scaler Function dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL')) cane.scale_data(dfNumbers, n_cores = 3, scaleFunc="min_max") # all columns using 3 cores cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="min_max") # scale specific columns cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="std") #standard Scaler #####################Custom Function Example####################### #This will be an example file you of your custom function (e.g., "functions.py") import pandas as pd import numpy as np import cane def customFunc(val): return pd.DataFrame([round((i - 1) / 3, 2) for i in val],columns=[val.name + "_custom_scalled_function]) ### This is will be your main script from functions import * # with a custom function to apply to data: if __name__ == "__main__": dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL')) cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="custom", customfunc = customFunc) ``` %package -n python3-cane Summary: Cane - Categorical Attribute traNsformation Environment Provides: python-cane BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-cane # Cane - Categorical Attribute traNsformation Environment [![Downloads](https://pepy.tech/badge/cane)](https://pepy.tech/project/cane) [![Downloads](https://pepy.tech/badge/cane/month)](https://pepy.tech/project/cane) [![Downloads](https://pepy.tech/badge/cane/week)](https://pepy.tech/project/cane) CANE is a simpler but powerful preprocessing method for machine learning. At the moment offers some preprocessing methods: --> The Percentage Categorical Pruned (PCP) merges all least frequent levels (summing up to "perc" percent) into a single level as presented in (), which, for example, can be "Others" category. It can be useful when dealing with several amounts of categorical information (e.g., city data). An example of this can be viewed by the following pdf:

View PDF.

Which the 1,000 highest frequency values (decreasing order) for the user city attribute for the TEST traffic data (which contains a total of 10,690 levels). For this attribute and when , PCP selects only the most frequent 688 levels (dashed vertical line) merging the other 10,002 infrequent levels into the "Others" label. This method results in 689 binary inputs, which is much less than the 10690 binary inputs required by the standard one-hot transform (reduction of percentage points). --> The Inverse Document Frequency (IDF) codifies the categorical levels into frequency values, where the closer to 0 means, the more frequent it is (). --> Implementation of a simpler One-Hot-Encoding method. --> Minmax and Standard scaler (based on sklearn functions) with column selection and multicore support. Also, it is possible to apply these transformations to specific columns only instead of the full dataset (follow the example). However it only works with numerical data (e.g., MSE, decision scores) --> You can also provide a custom scaler version of your own! (check example) --> Use IDF with spark dataframes Future Function ideas: -- MultiColumn scale (based on the implementation of IDF and PCP) Scaling of IDF values (normalized IDF) # Installation To install this package please run the following command ``` cmd pip install cane ``` # New Version 2.3: [x] - PCP with spark dataframes [x] - Improvements in the example file and readme [x] - New Citation # Suggestions and feedback Any feedback will be appreciated. For questions and other suggestions contact luis.matos@dsi.uminho.pt Found any bugs? Post Them on the github page of the project! (https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-Environment) Thanks for the support! # Citation To cite this module please use: ``` @article{MATOS2022100359, author = {Lu{\'\i}s Miguel Matos and Jo{\~a}o Azevedo and Arthur Matta and Andr{\'e} Pilastri and Paulo Cortez and Rui Mendes}, doi = {https://doi.org/10.1016/j.simpa.2022.100359}, issn = {2665-9638}, journal = {Software Impacts}, keywords = {Data preprocessing, CANE, Python programming language, Machine learning}, pages = {100359}, title = {Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing}, url = {https://www.sciencedirect.com/science/article/pii/S2665963822000720}, year = {2022}, bdsk-url-1 = {https://www.sciencedirect.com/science/article/pii/S2665963822000720}, bdsk-url-2 = {https://doi.org/10.1016/j.simpa.2022.100359}} ``` # Example ``` python import pandas as pd import cane import timeit import numpy as np x = [k for s in ([k] * n for k, n in [('a', 70000), ('b', 50000), ('c', 30000), ('d', 10000), ('e', 1000)]) for k in s] df = pd.DataFrame({f'x{i}' : x for i in range(1, 130)}) dataPCP = cane.pcp(df) # uses the PCP method and only 1 core with perc == 0.05 for all columns dataPCP = cane.pcp(df, n_coresJob=2) # uses the PCP method and only 2 cores for all columns dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False) # With Progress Bar for all columns dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"]) # With Progress Bar and specific columns #dicionary with the transformed data dataPCP = cane.pcp(df) dicionary = cane.PCPDictionary(dataset = dataPCP, columnsUse = dataPCP.columns, targetColumn = None) #no target feature to avoid going into dictionary print(dicionary) dataIDF = cane.idf(df) # uses the IDF method and only 1 core for all columns dataIDF = cane.idf(df, n_coresJob=2) # uses the IDF method and only 2 core for all columns dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False) # With Progress Bar for all columns dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"]) # specific columns dataIDF = cane.idf_multicolumn(df, columns_use = ["x1","x2"]) # aplication of specific multicolumn setting IDF idfDicionary = cane.idfDictionary(Original = df, Transformed = dataIDF, columns_use = ["x1","x2"]) #following the example above of the 2 columns dataH = cane.one_hot(df) # without a column prefixer dataH2 = cane.one_hot(df, column_prefix='column') # it will use the original column name prefix # (useful for when dealing with id number columns) dataH3 = cane.one_hot(df, column_prefix='customColName') # it will use a custom prefix defined by # the value of the column_prefix dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2) # it will use the original column name prefix # (useful for when dealing with id number columns) # with 2 cores dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2 ,disableLoadBar = False) # With Progress Bar Active with 2 cores dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2 ,disableLoadBar = False,columns_use = ["x1","x2"]) # With Progress Bar specific columns! #specific example with multicolumn x2 = [k for s in ([k] * n for k, n in [('a', 50), ('b', 10), ('c', 20), ('d', 15), ('e', 5)]) for k in s] x3 = [k for s in ([k] * n for k, n in [('a', 40), ('b', 20), ('c', 1), ('d', 1), ('e', 38)]) for k in s] df2 = pd.concat([pd.DataFrame({f'x{i}' : x2 for i in range(1, 3)}),pd.DataFrame({f'y{i}' : x3 for i in range(1, 3)})], axis=1) dataPCP = cane.pcp(df2, n_coresJob=2,disableLoadBar = False) print("normal PCP \n",dataPCP) dataPCP2 = cane.pcp_multicolumn(df2, columns_use = ["x1","y1"]) # aplication of specific multicolumn setting PCP print("multicolumn PCP \n",dataPCP2) dataIDF = cane.idf(df2, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","y1"]) # specific columns print("normal idf \n",dataIDF) dataIDF2 = cane.idf_multicolumn(df2, columns_use = ["x1","y1"]) # aplication of specific multicolumn setting IDF print("multicolumn idf \n",dataIDF2) #Time Measurement in 10 runs print("Time Measurement in 10 runs (unicore)") OT = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=1),number = 10) IT = timeit.timeit(lambda:cane.idf(df),number = 10) PT = timeit.timeit(lambda:cane.pcp(df),number = 10) print("One-Hot Time:",OT) print("IDF Time:",IT) print("PCP Time:",PT) #Time Measurement in 10 runs (multicore) print("Time Measurement in 10 runs (multicore)") OTM = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=10),number = 10) ITM = timeit.timeit(lambda:cane.idf(df,n_coresJob=10),number = 10) PTM = timeit.timeit(lambda:cane.pcp(df,n_coresJob=10),number = 10) print("One-Hot Time Multicore:",OTM) print("IDF Time Multicore:",ITM) print("PCP Time Multicore:",PTM) # IDF with pyspark configs import cane from pyspark.sql import SparkSession #Create PySpark SparkSession spark = SparkSession.builder.getOrCreate() #Create PySpark DataFrame from Pandas sparkDF=spark.createDataFrame(df) cols = sparkDF.columns DFIDF, idf = cane.spark_idf_multicolumn(sparkDF, cols) print(DFIDF.show(20)) dataIDF = cane.idf(df) #check if it is correct: print(dataIDF.equals(DFIDF.toPandas())) #equals means correct for both pandas version and original #PCP with pyspark configs import cane from pyspark.sql import SparkSession #Create PySpark SparkSession spark = SparkSession.builder.getOrCreate() #Create PySpark DataFrame from Pandas sparkDF=spark.createDataFrame(df) cols = sparkDF.columns DFPCP, pcp = cane.spark_pcp(sparkDF, cols, 0.05, "Others") DFPCP.show(20) #check if it is correct: dataPCP = cane.pcp(df) print(dataPCP.equals(DFPCP.toPandas())) #equals means correct for both pandas version and original ``` # Scaler Example with cane These examples present the usage of cane with the standard methods (standard scaler e min max scaler). Also, it is presented how to implement a custom scaler function of your own with cane! ``` python #New Scaler Function dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL')) cane.scale_data(dfNumbers, n_cores = 3, scaleFunc="min_max") # all columns using 3 cores cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="min_max") # scale specific columns cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="std") #standard Scaler #####################Custom Function Example####################### #This will be an example file you of your custom function (e.g., "functions.py") import pandas as pd import numpy as np import cane def customFunc(val): return pd.DataFrame([round((i - 1) / 3, 2) for i in val],columns=[val.name + "_custom_scalled_function]) ### This is will be your main script from functions import * # with a custom function to apply to data: if __name__ == "__main__": dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL')) cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="custom", customfunc = customFunc) ``` %package help Summary: Development documents and examples for cane Provides: python3-cane-doc %description help # Cane - Categorical Attribute traNsformation Environment [![Downloads](https://pepy.tech/badge/cane)](https://pepy.tech/project/cane) [![Downloads](https://pepy.tech/badge/cane/month)](https://pepy.tech/project/cane) [![Downloads](https://pepy.tech/badge/cane/week)](https://pepy.tech/project/cane) CANE is a simpler but powerful preprocessing method for machine learning. At the moment offers some preprocessing methods: --> The Percentage Categorical Pruned (PCP) merges all least frequent levels (summing up to "perc" percent) into a single level as presented in (), which, for example, can be "Others" category. It can be useful when dealing with several amounts of categorical information (e.g., city data). An example of this can be viewed by the following pdf:

View PDF.

Which the 1,000 highest frequency values (decreasing order) for the user city attribute for the TEST traffic data (which contains a total of 10,690 levels). For this attribute and when , PCP selects only the most frequent 688 levels (dashed vertical line) merging the other 10,002 infrequent levels into the "Others" label. This method results in 689 binary inputs, which is much less than the 10690 binary inputs required by the standard one-hot transform (reduction of percentage points). --> The Inverse Document Frequency (IDF) codifies the categorical levels into frequency values, where the closer to 0 means, the more frequent it is (). --> Implementation of a simpler One-Hot-Encoding method. --> Minmax and Standard scaler (based on sklearn functions) with column selection and multicore support. Also, it is possible to apply these transformations to specific columns only instead of the full dataset (follow the example). However it only works with numerical data (e.g., MSE, decision scores) --> You can also provide a custom scaler version of your own! (check example) --> Use IDF with spark dataframes Future Function ideas: -- MultiColumn scale (based on the implementation of IDF and PCP) Scaling of IDF values (normalized IDF) # Installation To install this package please run the following command ``` cmd pip install cane ``` # New Version 2.3: [x] - PCP with spark dataframes [x] - Improvements in the example file and readme [x] - New Citation # Suggestions and feedback Any feedback will be appreciated. For questions and other suggestions contact luis.matos@dsi.uminho.pt Found any bugs? Post Them on the github page of the project! (https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-Environment) Thanks for the support! # Citation To cite this module please use: ``` @article{MATOS2022100359, author = {Lu{\'\i}s Miguel Matos and Jo{\~a}o Azevedo and Arthur Matta and Andr{\'e} Pilastri and Paulo Cortez and Rui Mendes}, doi = {https://doi.org/10.1016/j.simpa.2022.100359}, issn = {2665-9638}, journal = {Software Impacts}, keywords = {Data preprocessing, CANE, Python programming language, Machine learning}, pages = {100359}, title = {Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing}, url = {https://www.sciencedirect.com/science/article/pii/S2665963822000720}, year = {2022}, bdsk-url-1 = {https://www.sciencedirect.com/science/article/pii/S2665963822000720}, bdsk-url-2 = {https://doi.org/10.1016/j.simpa.2022.100359}} ``` # Example ``` python import pandas as pd import cane import timeit import numpy as np x = [k for s in ([k] * n for k, n in [('a', 70000), ('b', 50000), ('c', 30000), ('d', 10000), ('e', 1000)]) for k in s] df = pd.DataFrame({f'x{i}' : x for i in range(1, 130)}) dataPCP = cane.pcp(df) # uses the PCP method and only 1 core with perc == 0.05 for all columns dataPCP = cane.pcp(df, n_coresJob=2) # uses the PCP method and only 2 cores for all columns dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False) # With Progress Bar for all columns dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"]) # With Progress Bar and specific columns #dicionary with the transformed data dataPCP = cane.pcp(df) dicionary = cane.PCPDictionary(dataset = dataPCP, columnsUse = dataPCP.columns, targetColumn = None) #no target feature to avoid going into dictionary print(dicionary) dataIDF = cane.idf(df) # uses the IDF method and only 1 core for all columns dataIDF = cane.idf(df, n_coresJob=2) # uses the IDF method and only 2 core for all columns dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False) # With Progress Bar for all columns dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"]) # specific columns dataIDF = cane.idf_multicolumn(df, columns_use = ["x1","x2"]) # aplication of specific multicolumn setting IDF idfDicionary = cane.idfDictionary(Original = df, Transformed = dataIDF, columns_use = ["x1","x2"]) #following the example above of the 2 columns dataH = cane.one_hot(df) # without a column prefixer dataH2 = cane.one_hot(df, column_prefix='column') # it will use the original column name prefix # (useful for when dealing with id number columns) dataH3 = cane.one_hot(df, column_prefix='customColName') # it will use a custom prefix defined by # the value of the column_prefix dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2) # it will use the original column name prefix # (useful for when dealing with id number columns) # with 2 cores dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2 ,disableLoadBar = False) # With Progress Bar Active with 2 cores dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2 ,disableLoadBar = False,columns_use = ["x1","x2"]) # With Progress Bar specific columns! #specific example with multicolumn x2 = [k for s in ([k] * n for k, n in [('a', 50), ('b', 10), ('c', 20), ('d', 15), ('e', 5)]) for k in s] x3 = [k for s in ([k] * n for k, n in [('a', 40), ('b', 20), ('c', 1), ('d', 1), ('e', 38)]) for k in s] df2 = pd.concat([pd.DataFrame({f'x{i}' : x2 for i in range(1, 3)}),pd.DataFrame({f'y{i}' : x3 for i in range(1, 3)})], axis=1) dataPCP = cane.pcp(df2, n_coresJob=2,disableLoadBar = False) print("normal PCP \n",dataPCP) dataPCP2 = cane.pcp_multicolumn(df2, columns_use = ["x1","y1"]) # aplication of specific multicolumn setting PCP print("multicolumn PCP \n",dataPCP2) dataIDF = cane.idf(df2, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","y1"]) # specific columns print("normal idf \n",dataIDF) dataIDF2 = cane.idf_multicolumn(df2, columns_use = ["x1","y1"]) # aplication of specific multicolumn setting IDF print("multicolumn idf \n",dataIDF2) #Time Measurement in 10 runs print("Time Measurement in 10 runs (unicore)") OT = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=1),number = 10) IT = timeit.timeit(lambda:cane.idf(df),number = 10) PT = timeit.timeit(lambda:cane.pcp(df),number = 10) print("One-Hot Time:",OT) print("IDF Time:",IT) print("PCP Time:",PT) #Time Measurement in 10 runs (multicore) print("Time Measurement in 10 runs (multicore)") OTM = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=10),number = 10) ITM = timeit.timeit(lambda:cane.idf(df,n_coresJob=10),number = 10) PTM = timeit.timeit(lambda:cane.pcp(df,n_coresJob=10),number = 10) print("One-Hot Time Multicore:",OTM) print("IDF Time Multicore:",ITM) print("PCP Time Multicore:",PTM) # IDF with pyspark configs import cane from pyspark.sql import SparkSession #Create PySpark SparkSession spark = SparkSession.builder.getOrCreate() #Create PySpark DataFrame from Pandas sparkDF=spark.createDataFrame(df) cols = sparkDF.columns DFIDF, idf = cane.spark_idf_multicolumn(sparkDF, cols) print(DFIDF.show(20)) dataIDF = cane.idf(df) #check if it is correct: print(dataIDF.equals(DFIDF.toPandas())) #equals means correct for both pandas version and original #PCP with pyspark configs import cane from pyspark.sql import SparkSession #Create PySpark SparkSession spark = SparkSession.builder.getOrCreate() #Create PySpark DataFrame from Pandas sparkDF=spark.createDataFrame(df) cols = sparkDF.columns DFPCP, pcp = cane.spark_pcp(sparkDF, cols, 0.05, "Others") DFPCP.show(20) #check if it is correct: dataPCP = cane.pcp(df) print(dataPCP.equals(DFPCP.toPandas())) #equals means correct for both pandas version and original ``` # Scaler Example with cane These examples present the usage of cane with the standard methods (standard scaler e min max scaler). Also, it is presented how to implement a custom scaler function of your own with cane! ``` python #New Scaler Function dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL')) cane.scale_data(dfNumbers, n_cores = 3, scaleFunc="min_max") # all columns using 3 cores cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="min_max") # scale specific columns cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="std") #standard Scaler #####################Custom Function Example####################### #This will be an example file you of your custom function (e.g., "functions.py") import pandas as pd import numpy as np import cane def customFunc(val): return pd.DataFrame([round((i - 1) / 3, 2) for i in val],columns=[val.name + "_custom_scalled_function]) ### This is will be your main script from functions import * # with a custom function to apply to data: if __name__ == "__main__": dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL')) cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="custom", customfunc = customFunc) ``` %prep %autosetup -n cane-2.3.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-cane -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 2.3.2-1 - Package Spec generated