%global _empty_manifest_terminate_build 0 Name: python-vectorhub Version: 1.8.3 Release: 1 Summary: One liner to encode data into vectors with state-of-the-art models using tensorflow, pytorch and other open source libraries. Word2Vec, Image2Vec, BERT, etc License: Apache URL: https://github.com/vector-ai/vectorhub Source0: https://mirrors.nju.edu.cn/pypi/web/packages/20/d5/03f2cf02eddd67439aef3e08bd54ca36f6d663c3ed092093b07998337411/vectorhub-1.8.3.tar.gz BuildArch: noarch Requires: python3-PyYAML Requires: python3-requests Requires: python3-document-utils Requires: python3-numpy Requires: python3-Pillow Requires: python3-PyYAML Requires: python3-imageio Requires: python3-soundfile Requires: python3-tensorflow Requires: python3-sphinx-rtd-theme Requires: python3-requests Requires: python3-sentence-transformers Requires: python3-moviepy Requires: python3-document-utils Requires: python3-scikit-image Requires: python3-PyYAML Requires: python3-torch Requires: python3-transformers Requires: python3-fastai Requires: python3-pytest Requires: python3-torch Requires: python3-appdirs Requires: python3-mtcnn Requires: python3-tf-models-official Requires: python3-opencv-python Requires: python3-tensorflow-text Requires: python3-Pillow Requires: python3-librosa Requires: python3-tensorflow-hub Requires: python3-fairseq Requires: python3-numpy Requires: python3-clip-by-openai Requires: python3-bert-for-tf2 Requires: python3-appdirs Requires: python3-librosa Requires: python3-bert-for-tf2 Requires: python3-Pillow Requires: python3-imageio Requires: python3-scikit-image Requires: python3-torch Requires: python3-clip-by-openai Requires: python3-opencv-python Requires: python3-clip-by-openai Requires: python3-PyYAML Requires: python3-requests Requires: python3-document-utils Requires: python3-numpy Requires: python3-document-utils Requires: python3-fairseq Requires: python3-torch Requires: python3-tensorflow-hub Requires: python3-soundfile Requires: python3-tensorflow Requires: python3-librosa Requires: python3-transformers Requires: python3-torch Requires: python3-imageio Requires: python3-scikit-image Requires: python3-opencv-python Requires: python3-fastai Requires: python3-torch Requires: python3-Pillow Requires: python3-tensorflow Requires: python3-appdirs Requires: python3-mtcnn Requires: python3-opencv-python Requires: python3-imageio Requires: python3-scikit-image Requires: python3-tensorflow Requires: python3-tensorflow-hub Requires: python3-torch Requires: python3-sentence-transformers Requires: python3-transformers Requires: python3-tensorflow Requires: python3-tensorflow-text Requires: python3-tensorflow Requires: python3-tensorflow-hub Requires: python3-tf-models-official Requires: python3-bert-for-tf2 Requires: python3-tf-models-official Requires: python3-tensorflow-hub Requires: python3-tensorflow Requires: python3-bert-for-tf2 Requires: python3-transformers Requires: python3-torch Requires: python3-moviepy Requires: python3-opencv-python Requires: python3-fairseq Requires: python3-fastai Requires: python3-imageio Requires: python3-librosa Requires: python3-moviepy Requires: python3-mtcnn Requires: python3-numpy Requires: python3-opencv-python Requires: python3-pytest Requires: python3-requests Requires: python3-scikit-image Requires: python3-sentence-transformers Requires: python3-soundfile Requires: python3-sphinx-rtd-theme Requires: python3-tensorflow-hub Requires: python3-tensorflow-text Requires: python3-tensorflow Requires: python3-sphinx-rtd-theme Requires: python3-pytest Requires: python3-tf-models-official Requires: python3-torch Requires: python3-torch Requires: python3-transformers %description


There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily. Vector Hub provides: - A low barrier of entry for practitioners (using common methods) - Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code - Retrieve and find information about a model - An easy way to handle dependencies easily for different models - Universal format of installation and encoding (using a simple `encode` method). In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our universal `encode` API. Every model has the following: - `encode` allows you to turn raw data into a vector - `bulk_encode` allows you to turn multiple objects into multiple vectors - `encode_documents` returns a list of dictionaries with with an encoded field For bi-modal models: Question Answering encoders will have: - `encode_question` - `encode_answer` - `bulk_encode_question` - `bulk_encode_answer` Text Image Bi-encoders will have: - `encode_image` - `encode_text` - `bulk_encode_image` - `bulk_encode_text` %package -n python3-vectorhub Summary: One liner to encode data into vectors with state-of-the-art models using tensorflow, pytorch and other open source libraries. Word2Vec, Image2Vec, BERT, etc Provides: python-vectorhub BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-vectorhub


There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily. Vector Hub provides: - A low barrier of entry for practitioners (using common methods) - Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code - Retrieve and find information about a model - An easy way to handle dependencies easily for different models - Universal format of installation and encoding (using a simple `encode` method). In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our universal `encode` API. Every model has the following: - `encode` allows you to turn raw data into a vector - `bulk_encode` allows you to turn multiple objects into multiple vectors - `encode_documents` returns a list of dictionaries with with an encoded field For bi-modal models: Question Answering encoders will have: - `encode_question` - `encode_answer` - `bulk_encode_question` - `bulk_encode_answer` Text Image Bi-encoders will have: - `encode_image` - `encode_text` - `bulk_encode_image` - `bulk_encode_text` %package help Summary: Development documents and examples for vectorhub Provides: python3-vectorhub-doc %description help


There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily. Vector Hub provides: - A low barrier of entry for practitioners (using common methods) - Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code - Retrieve and find information about a model - An easy way to handle dependencies easily for different models - Universal format of installation and encoding (using a simple `encode` method). In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our universal `encode` API. Every model has the following: - `encode` allows you to turn raw data into a vector - `bulk_encode` allows you to turn multiple objects into multiple vectors - `encode_documents` returns a list of dictionaries with with an encoded field For bi-modal models: Question Answering encoders will have: - `encode_question` - `encode_answer` - `bulk_encode_question` - `bulk_encode_answer` Text Image Bi-encoders will have: - `encode_image` - `encode_text` - `bulk_encode_image` - `bulk_encode_text` %prep %autosetup -n vectorhub-1.8.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-vectorhub -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 1.8.3-1 - Package Spec generated