%global _empty_manifest_terminate_build 0 Name: python-flowtorch Version: 0.8 Release: 1 Summary: Normalizing Flows for PyTorch License: MIT URL: https://flowtorch.ai/users Source0: https://mirrors.nju.edu.cn/pypi/web/packages/5a/ac/c6527619b342a8d7bf5dd82c1d49c750946c2512ebe66187c81c143fcfa0/flowtorch-0.8.tar.gz BuildArch: noarch Requires: python3-torch Requires: python3-numpy Requires: python3-pytest Requires: python3-pytest-cov Requires: python3-scipy Requires: python3-black Requires: python3-flake8 Requires: python3-flake8-bugbear Requires: python3-mypy Requires: python3-toml Requires: python3-usort Requires: python3-numpy Requires: python3-pytest Requires: python3-pytest-cov Requires: python3-scipy %description

[![](https://github.com/facebookincubator/flowtorch/workflows/Python%20package/badge.svg)](https://github.com/facebookincubator/flowtorch/actions?query=workflow%3A%22Python+package%22) Copyright © Meta Platforms, Inc This source code is licensed under the MIT license found in the [LICENSE.txt](https://github.com/facebookincubator/flowtorch/blob/main/LICENSE.txt) file in the root directory of this source tree. # Overview FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called [Normalizing Flows](https://arxiv.org/abs/1908.09257). # Installing An easy way to get started is to install from source: git clone https://github.com/facebookincubator/flowtorch.git cd flowtorch pip install -e . # Further Information We refer you to the [FlowTorch website](https://flowtorch.ai) for more information about installation, using the library, and becoming a contributor. Here is a handy guide: * [What are normalizing flows?](https://flowtorch.ai/users) * [How do I install FlowTorch?](https://flowtorch.ai/users/installation) * [How do I construct and train a distribution?](https://flowtorch.ai/users/start) * [How do I contribute new normalizing flow methods?](https://flowtorch.ai/dev) * [Where can I report bugs?](https://github.com/facebookincubator/flowtorch/issues) * [Where can I ask general questions and make feature requests?](https://github.com/facebookincubator/flowtorch/discussions) * [What features are planned for the near future?](https://github.com/facebookincubator/flowtorch/projects) %package -n python3-flowtorch Summary: Normalizing Flows for PyTorch Provides: python-flowtorch BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-flowtorch

[![](https://github.com/facebookincubator/flowtorch/workflows/Python%20package/badge.svg)](https://github.com/facebookincubator/flowtorch/actions?query=workflow%3A%22Python+package%22) Copyright © Meta Platforms, Inc This source code is licensed under the MIT license found in the [LICENSE.txt](https://github.com/facebookincubator/flowtorch/blob/main/LICENSE.txt) file in the root directory of this source tree. # Overview FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called [Normalizing Flows](https://arxiv.org/abs/1908.09257). # Installing An easy way to get started is to install from source: git clone https://github.com/facebookincubator/flowtorch.git cd flowtorch pip install -e . # Further Information We refer you to the [FlowTorch website](https://flowtorch.ai) for more information about installation, using the library, and becoming a contributor. Here is a handy guide: * [What are normalizing flows?](https://flowtorch.ai/users) * [How do I install FlowTorch?](https://flowtorch.ai/users/installation) * [How do I construct and train a distribution?](https://flowtorch.ai/users/start) * [How do I contribute new normalizing flow methods?](https://flowtorch.ai/dev) * [Where can I report bugs?](https://github.com/facebookincubator/flowtorch/issues) * [Where can I ask general questions and make feature requests?](https://github.com/facebookincubator/flowtorch/discussions) * [What features are planned for the near future?](https://github.com/facebookincubator/flowtorch/projects) %package help Summary: Development documents and examples for flowtorch Provides: python3-flowtorch-doc %description help

[![](https://github.com/facebookincubator/flowtorch/workflows/Python%20package/badge.svg)](https://github.com/facebookincubator/flowtorch/actions?query=workflow%3A%22Python+package%22) Copyright © Meta Platforms, Inc This source code is licensed under the MIT license found in the [LICENSE.txt](https://github.com/facebookincubator/flowtorch/blob/main/LICENSE.txt) file in the root directory of this source tree. # Overview FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called [Normalizing Flows](https://arxiv.org/abs/1908.09257). # Installing An easy way to get started is to install from source: git clone https://github.com/facebookincubator/flowtorch.git cd flowtorch pip install -e . # Further Information We refer you to the [FlowTorch website](https://flowtorch.ai) for more information about installation, using the library, and becoming a contributor. Here is a handy guide: * [What are normalizing flows?](https://flowtorch.ai/users) * [How do I install FlowTorch?](https://flowtorch.ai/users/installation) * [How do I construct and train a distribution?](https://flowtorch.ai/users/start) * [How do I contribute new normalizing flow methods?](https://flowtorch.ai/dev) * [Where can I report bugs?](https://github.com/facebookincubator/flowtorch/issues) * [Where can I ask general questions and make feature requests?](https://github.com/facebookincubator/flowtorch/discussions) * [What features are planned for the near future?](https://github.com/facebookincubator/flowtorch/projects) %prep %autosetup -n flowtorch-0.8 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-flowtorch -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 31 2023 Python_Bot - 0.8-1 - Package Spec generated