%global _empty_manifest_terminate_build 0
Name: python-EasyNN
Version: 0.2.2
Release: 1
Summary: EasyNN is a python package designed to provide an easy-to-use neural network. The package is designed to work right out of the box, while also allowing the user to customize features as they see fit.
License: mit
URL: https://pypi.org/project/EasyNN/
Source0: https://mirrors.aliyun.com/pypi/web/packages/93/2b/ca52f80d2fc2584810e8481ed0652a962e8518e9d997686f5b3c27be3d6e/EasyNN-0.2.2.tar.gz
BuildArch: noarch
Requires: python3-matplotlib
Requires: python3-clint
Requires: python3-tabulate
Requires: python3-requests
Requires: python3-numpy
Requires: python3-nptyping
Requires: python3-beautifulsoup4
Requires: python3-google-search-results
Requires: python3-prettyformatter
%description
![](https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/readme_logo.png)
# EasyNN - Neural Networks made Easy
EasyNN is a python package designed to provide an easy-to-use Neural Network. The package is designed to work right out of the box with multiple datasets, while also allowing the user to customize features as they see fit.
### EasyNN requires Python version 3.9.7 or greater.
## See our [wiki](https://github.com/danielwilczak101/EasyNN/wiki) for more information and [Datasets](https://github.com/danielwilczak101/EasyNN/wiki).
## Installation:
Run python's pip3 to install:
```Python
pip3 install EasyNN
```
### Model:
```Python
from EasyNN.examples.mnist.number.trained import model
# Classify an image.
print(model.classify(image))
```
### Dataset Example:
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.examples.mnist.number.data import dataset
images, labels = dataset
# Classify what the second image is in the dataset.
print(model.classify(images[1]))
# Show the image.
model.show(images[1])
```
### Dataset example output:
```
Downloading - number_parameters.npz:
[################################] 1769/1769 - 00:00:00
Downloading - number_structure.pkl:
[################################] 10700/10700 - 00:00:00
Downloading - number_dataset.npz:
[################################] 11221/11221 - 00:00:00
0
```
### Full example:
More info can be found about [converting images](https://github.com/danielwilczak101/EasyNN/wiki/Image-Utility) in the utilities section.
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.utilities import Preprocess, download
# Download an example image.
download("three.jpg","https://bit.ly/3dbO1eV")
format_options = dict(
grayscale=True,
invert=True,
process=True,
contrast=30,
resize=(28, 28),
rotate=3,
)
# Converting your image into the correct format for the mnist number dataset.
image = Preprocess("three.jpg").format(**format_options)
# Classify what the image is using the pretrained model.
print(model.classify(image))
# Show the image after it has been processed.
model.show(image)
```
### Output:
```bash
Downloading - four.jpg:
[################################] 1371/1371 - 00:00:00
3
```
### Image output:
### Trained Models
Use the trained models section to see EasyNN's datasets and pre-trained neural networks ready to run.
[MNIST Number](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Numbers) Classifier network for images of handwritten single digits between 0 and 9.
[MNIST Fashion](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Fashion) Classifier network for ten classes of human clothing images of the size 28x28 pixels.
[Cifar 10](https://github.com/danielwilczak101/EasyNN/wiki/Cifar10) Classifier network for ten types of images varying from airplane, cat, dog, etc - 32x32 RGB images.
## To see more examples with many other datasets. Please visit our [wiki](https://github.com/danielwilczak101/EasyNN/wiki).
%package -n python3-EasyNN
Summary: EasyNN is a python package designed to provide an easy-to-use neural network. The package is designed to work right out of the box, while also allowing the user to customize features as they see fit.
Provides: python-EasyNN
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-EasyNN
![](https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/readme_logo.png)
# EasyNN - Neural Networks made Easy
EasyNN is a python package designed to provide an easy-to-use Neural Network. The package is designed to work right out of the box with multiple datasets, while also allowing the user to customize features as they see fit.
### EasyNN requires Python version 3.9.7 or greater.
## See our [wiki](https://github.com/danielwilczak101/EasyNN/wiki) for more information and [Datasets](https://github.com/danielwilczak101/EasyNN/wiki).
## Installation:
Run python's pip3 to install:
```Python
pip3 install EasyNN
```
### Model:
```Python
from EasyNN.examples.mnist.number.trained import model
# Classify an image.
print(model.classify(image))
```
### Dataset Example:
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.examples.mnist.number.data import dataset
images, labels = dataset
# Classify what the second image is in the dataset.
print(model.classify(images[1]))
# Show the image.
model.show(images[1])
```
### Dataset example output:
```
Downloading - number_parameters.npz:
[################################] 1769/1769 - 00:00:00
Downloading - number_structure.pkl:
[################################] 10700/10700 - 00:00:00
Downloading - number_dataset.npz:
[################################] 11221/11221 - 00:00:00
0
```
### Full example:
More info can be found about [converting images](https://github.com/danielwilczak101/EasyNN/wiki/Image-Utility) in the utilities section.
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.utilities import Preprocess, download
# Download an example image.
download("three.jpg","https://bit.ly/3dbO1eV")
format_options = dict(
grayscale=True,
invert=True,
process=True,
contrast=30,
resize=(28, 28),
rotate=3,
)
# Converting your image into the correct format for the mnist number dataset.
image = Preprocess("three.jpg").format(**format_options)
# Classify what the image is using the pretrained model.
print(model.classify(image))
# Show the image after it has been processed.
model.show(image)
```
### Output:
```bash
Downloading - four.jpg:
[################################] 1371/1371 - 00:00:00
3
```
### Image output:
### Trained Models
Use the trained models section to see EasyNN's datasets and pre-trained neural networks ready to run.
[MNIST Number](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Numbers) Classifier network for images of handwritten single digits between 0 and 9.
[MNIST Fashion](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Fashion) Classifier network for ten classes of human clothing images of the size 28x28 pixels.
[Cifar 10](https://github.com/danielwilczak101/EasyNN/wiki/Cifar10) Classifier network for ten types of images varying from airplane, cat, dog, etc - 32x32 RGB images.
## To see more examples with many other datasets. Please visit our [wiki](https://github.com/danielwilczak101/EasyNN/wiki).
%package help
Summary: Development documents and examples for EasyNN
Provides: python3-EasyNN-doc
%description help
![](https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/readme_logo.png)
# EasyNN - Neural Networks made Easy
EasyNN is a python package designed to provide an easy-to-use Neural Network. The package is designed to work right out of the box with multiple datasets, while also allowing the user to customize features as they see fit.
### EasyNN requires Python version 3.9.7 or greater.
## See our [wiki](https://github.com/danielwilczak101/EasyNN/wiki) for more information and [Datasets](https://github.com/danielwilczak101/EasyNN/wiki).
## Installation:
Run python's pip3 to install:
```Python
pip3 install EasyNN
```
### Model:
```Python
from EasyNN.examples.mnist.number.trained import model
# Classify an image.
print(model.classify(image))
```
### Dataset Example:
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.examples.mnist.number.data import dataset
images, labels = dataset
# Classify what the second image is in the dataset.
print(model.classify(images[1]))
# Show the image.
model.show(images[1])
```
### Dataset example output:
```
Downloading - number_parameters.npz:
[################################] 1769/1769 - 00:00:00
Downloading - number_structure.pkl:
[################################] 10700/10700 - 00:00:00
Downloading - number_dataset.npz:
[################################] 11221/11221 - 00:00:00
0
```
### Full example:
More info can be found about [converting images](https://github.com/danielwilczak101/EasyNN/wiki/Image-Utility) in the utilities section.
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.utilities import Preprocess, download
# Download an example image.
download("three.jpg","https://bit.ly/3dbO1eV")
format_options = dict(
grayscale=True,
invert=True,
process=True,
contrast=30,
resize=(28, 28),
rotate=3,
)
# Converting your image into the correct format for the mnist number dataset.
image = Preprocess("three.jpg").format(**format_options)
# Classify what the image is using the pretrained model.
print(model.classify(image))
# Show the image after it has been processed.
model.show(image)
```
### Output:
```bash
Downloading - four.jpg:
[################################] 1371/1371 - 00:00:00
3
```
### Image output:
### Trained Models
Use the trained models section to see EasyNN's datasets and pre-trained neural networks ready to run.
[MNIST Number](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Numbers) Classifier network for images of handwritten single digits between 0 and 9.
[MNIST Fashion](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Fashion) Classifier network for ten classes of human clothing images of the size 28x28 pixels.
[Cifar 10](https://github.com/danielwilczak101/EasyNN/wiki/Cifar10) Classifier network for ten types of images varying from airplane, cat, dog, etc - 32x32 RGB images.
## To see more examples with many other datasets. Please visit our [wiki](https://github.com/danielwilczak101/EasyNN/wiki).
%prep
%autosetup -n EasyNN-0.2.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-EasyNN -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot - 0.2.2-1
- Package Spec generated