%global _empty_manifest_terminate_build 0 Name: python-H-MCRLLM Version: 0.0.24 Release: 1 Summary: H MCRLLM: Hierarchical Multivariate Curve Resolution by Log-Likelihood Maximization License: MIT License URL: https://pypi.org/project/H-MCRLLM/ Source0: https://mirrors.aliyun.com/pypi/web/packages/86/7a/4b013e02261bf14f2a137fe14c4101efc4ac6245cf2d90146f56bac96a5d/H_MCRLLM-0.0.24.tar.gz BuildArch: noarch %description H MCRLLM: Hierarchical Multivariate Curve Resolution by Log-Likelihood Maximization X = CS where X(nxk): Spectroscopic data where n spectra acquired over k energy levels C(nxa): Composition map based on a MCRLLM components S(axk): Spectra of the a components as computed by MCRLLM # Method first presented in Lavoie F.B., Braidy N. and Gosselin R. (2016) Including Noise Characteristics in MCR to improve Mapping and Component Extraction from Spectral Images, Chemometrics and Intelligent Laboratory Systems, 153, 40-50. # Dataset XPS dataset of Titanium, Vanadium and Chromium. Please refer to Lavoie et al. (2016) for further details on the sample. %package -n python3-H-MCRLLM Summary: H MCRLLM: Hierarchical Multivariate Curve Resolution by Log-Likelihood Maximization Provides: python-H-MCRLLM BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-H-MCRLLM H MCRLLM: Hierarchical Multivariate Curve Resolution by Log-Likelihood Maximization X = CS where X(nxk): Spectroscopic data where n spectra acquired over k energy levels C(nxa): Composition map based on a MCRLLM components S(axk): Spectra of the a components as computed by MCRLLM # Method first presented in Lavoie F.B., Braidy N. and Gosselin R. (2016) Including Noise Characteristics in MCR to improve Mapping and Component Extraction from Spectral Images, Chemometrics and Intelligent Laboratory Systems, 153, 40-50. # Dataset XPS dataset of Titanium, Vanadium and Chromium. Please refer to Lavoie et al. (2016) for further details on the sample. %package help Summary: Development documents and examples for H-MCRLLM Provides: python3-H-MCRLLM-doc %description help H MCRLLM: Hierarchical Multivariate Curve Resolution by Log-Likelihood Maximization X = CS where X(nxk): Spectroscopic data where n spectra acquired over k energy levels C(nxa): Composition map based on a MCRLLM components S(axk): Spectra of the a components as computed by MCRLLM # Method first presented in Lavoie F.B., Braidy N. and Gosselin R. (2016) Including Noise Characteristics in MCR to improve Mapping and Component Extraction from Spectral Images, Chemometrics and Intelligent Laboratory Systems, 153, 40-50. # Dataset XPS dataset of Titanium, Vanadium and Chromium. Please refer to Lavoie et al. (2016) for further details on the sample. %prep %autosetup -n H_MCRLLM-0.0.24 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-H-MCRLLM -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 0.0.24-1 - Package Spec generated