%global _empty_manifest_terminate_build 0 Name: python-dataplate Version: 1.0.1 Release: 1 Summary: DataPlate Python API - interact with Dataplate webserver License: Apache 2.0 URL: https://github.com/Dataplate/dataplate Source0: https://mirrors.aliyun.com/pypi/web/packages/38/d7/459c630400265367a549b28de06f52c848c6aac80b9e222e3d02a46ea844/dataplate-1.0.1.tar.gz BuildArch: noarch Requires: python3-boto3 Requires: python3-awswrangler Requires: python3-requests Requires: python3-scrapbook %description ## Installation pip install dataplate ## Description This client communicates with DataPlate platform servers from within your Data-Science development environment For more info: [DataPlate](http://dataplate.io) See also our JupyterLab extension: [DataPlate-Lab](https://pypi.org/project/dataplate-lab/) ## Usage using our open-source First: Install [DataPlate Portal Web service](./../webapp/README.md) and navigate to "API Documentation" for usage instructions **More details:** DataPlate() constructor accepts the following parameters: env - Environment to retrieve the Data from ('dev' or 'prd'). access_key - Alternative method for supplying your access key. dataplate_ur - Alternative method for supplying DataPlate Portal URI. Get the access key from Dataplate Web-service portal (Navigate in Menu to "Private access key"): This example shows how to run a query, and return results as Pandas DataFrame object: ``` from dataplate.client import DataPlate dataplate = DataPlate() df = dataplate.query_to_df(''' SELECT * FROM myTable WHERE `date`='20200218' AND hour=12 ''') ``` For more instructions, please refer to the [DataPlate Github](https://github.com/Dataplate) %package -n python3-dataplate Summary: DataPlate Python API - interact with Dataplate webserver Provides: python-dataplate BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-dataplate ## Installation pip install dataplate ## Description This client communicates with DataPlate platform servers from within your Data-Science development environment For more info: [DataPlate](http://dataplate.io) See also our JupyterLab extension: [DataPlate-Lab](https://pypi.org/project/dataplate-lab/) ## Usage using our open-source First: Install [DataPlate Portal Web service](./../webapp/README.md) and navigate to "API Documentation" for usage instructions **More details:** DataPlate() constructor accepts the following parameters: env - Environment to retrieve the Data from ('dev' or 'prd'). access_key - Alternative method for supplying your access key. dataplate_ur - Alternative method for supplying DataPlate Portal URI. Get the access key from Dataplate Web-service portal (Navigate in Menu to "Private access key"): This example shows how to run a query, and return results as Pandas DataFrame object: ``` from dataplate.client import DataPlate dataplate = DataPlate() df = dataplate.query_to_df(''' SELECT * FROM myTable WHERE `date`='20200218' AND hour=12 ''') ``` For more instructions, please refer to the [DataPlate Github](https://github.com/Dataplate) %package help Summary: Development documents and examples for dataplate Provides: python3-dataplate-doc %description help ## Installation pip install dataplate ## Description This client communicates with DataPlate platform servers from within your Data-Science development environment For more info: [DataPlate](http://dataplate.io) See also our JupyterLab extension: [DataPlate-Lab](https://pypi.org/project/dataplate-lab/) ## Usage using our open-source First: Install [DataPlate Portal Web service](./../webapp/README.md) and navigate to "API Documentation" for usage instructions **More details:** DataPlate() constructor accepts the following parameters: env - Environment to retrieve the Data from ('dev' or 'prd'). access_key - Alternative method for supplying your access key. dataplate_ur - Alternative method for supplying DataPlate Portal URI. Get the access key from Dataplate Web-service portal (Navigate in Menu to "Private access key"): This example shows how to run a query, and return results as Pandas DataFrame object: ``` from dataplate.client import DataPlate dataplate = DataPlate() df = dataplate.query_to_df(''' SELECT * FROM myTable WHERE `date`='20200218' AND hour=12 ''') ``` For more instructions, please refer to the [DataPlate Github](https://github.com/Dataplate) %prep %autosetup -n dataplate-1.0.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-dataplate -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 1.0.1-1 - Package Spec generated