%global _empty_manifest_terminate_build 0 Name: python-stockwell Version: 1.1 Release: 1 Summary: Time-frequency analysis through Stockwell transform License: CeCILL Free Software License Agreement, Version 2.1 URL: https://github.com/claudiodsf/stockwell Source0: https://mirrors.aliyun.com/pypi/web/packages/46/f7/0e71c285d44320445cc39e786ee61b4be1489a3ca7cf4246f82bb370ccb4/stockwell-1.1.tar.gz Requires: python3-numpy %description # Stockwell Python package for time-frequency analysis through Stockwell transform. Based on original code from [NIMH MEG Core Facility]. [![cf-badge]][cf-link] [![PyPI-badge]][PyPI-link] [![license-badge]][license-link] ## Installation ### Using Anaconda If you use [Anaconda], the latest release of Stockwell is available via [conda-forge][cf-link]. To install, simply run: conda install -c conda-forge stockwell ### Using pip and PyPI The latest release of Stockwell is available on the [Python Package Index][PyPI-link]. You can install it easily through `pip`: pip install stockwell ### Installation from source If no precompiled package is available for you architecture on PyPI, or if you want to work on the source code, you will need to compile this package from source. To obtain the source code, download the latest release from the [releases page][releases-link], or clone the GitHub project. #### C compiler Part of Stockwell is written in C, so you will need a C compiler. On Linux (Debian or Ubuntu), install the `build-essential` package: sudo apt install build-essential On macOS, install the XCode Command Line Tools: xcode-select --install On Windows, install the [Microsoft C++ Build Tools]. #### FFTW To compile Stockwell, you will need to have [FFTW] installed. If you use [Anaconda] (Linux, macOS, Windows): conda install fftw If you use Homebrew (macOS) brew install fftw If you use `apt` (Debian or Ubuntu) sudo apt install libfftw3-dev #### Install the Python package from source Finally, install this Python package using pip: pip install . Or, alternatively, in "editable" mode: pip install -e . ## Usage Example usage: ```python import numpy as np from scipy.signal import chirp import matplotlib.pyplot as plt from stockwell import st t = np.linspace(0, 10, 5001) w = chirp(t, f0=12.5, f1=2.5, t1=10, method='linear') fmin = 0 # Hz fmax = 25 # Hz df = 1./(t[-1]-t[0]) # sampling step in frequency domain (Hz) fmin_samples = int(fmin/df) fmax_samples = int(fmax/df) stock = st.st(w, fmin_samples, fmax_samples) extent = (t[0], t[-1], fmin, fmax) fig, ax = plt.subplots(2, 1, sharex=True) ax[0].plot(t, w) ax[0].set(ylabel='amplitude') ax[1].imshow(np.abs(stock), origin='lower', extent=extent) ax[1].axis('tight') ax[1].set(xlabel='time (s)', ylabel='frequency (Hz)') plt.show() ``` You should get the following output: ![stockwell.png](https://cdn.jsdelivr.net/gh/claudiodsf/stockwell/stockwell.png) You can also compute the inverse Stockwell transform, ex: ```python inv_stock = st.ist(stock, fmin_samples, fmax_samples) fig, ax = plt.subplots(2, 1, sharex=True) ax[0].plot(t, w, label='original signal') ax[0].plot(t, inv_stock, label='inverse Stockwell') ax[0].set(ylabel='amplitude') ax[0].legend(loc='upper right') ax[1].plot(t, w - inv_stock) ax[1].set_xlim(0, 10) ax[1].set(xlabel='time (s)', ylabel='amplitude difference') plt.show() ``` ![inv_stockwell.png](https://cdn.jsdelivr.net/gh/claudiodsf/stockwell/inv_stockwell.png) ## References Stockwell, R.G., Mansinha, L. & Lowe, R.P., 1996. Localization of the complex spectrum: the S transform, IEEE Trans. Signal Process., 44(4), 998–1001, doi:[10.1109/78.492555](https://doi.org/10.1109/78.492555) [S transform on Wikipedia]. [NIMH MEG Core Facility]: https://kurage.nimh.nih.gov/meglab/Meg/Stockwell [cf-badge]: http://img.shields.io/conda/vn/conda-forge/stockwell.svg [cf-link]: https://anaconda.org/conda-forge/stockwell [PyPI-badge]: http://img.shields.io/pypi/v/stockwell.svg [PyPI-link]: https://pypi.python.org/pypi/stockwell [license-badge]: https://img.shields.io/badge/license-GPLv3-green [license-link]: https://www.gnu.org/licenses/gpl-3.0.html [releases-link]: https://github.com/claudiodsf/stockwell/releases [Anaconda]: https://www.anaconda.com/products/individual [Microsoft C++ Build Tools]: https://visualstudio.microsoft.com/visual-cpp-build-tools [FFTW]: http://www.fftw.org [S transform on Wikipedia]: https://en.wikipedia.org/wiki/S_transform %package -n python3-stockwell Summary: Time-frequency analysis through Stockwell transform Provides: python-stockwell BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip BuildRequires: python3-cffi BuildRequires: gcc BuildRequires: gdb %description -n python3-stockwell # Stockwell Python package for time-frequency analysis through Stockwell transform. Based on original code from [NIMH MEG Core Facility]. [![cf-badge]][cf-link] [![PyPI-badge]][PyPI-link] [![license-badge]][license-link] ## Installation ### Using Anaconda If you use [Anaconda], the latest release of Stockwell is available via [conda-forge][cf-link]. To install, simply run: conda install -c conda-forge stockwell ### Using pip and PyPI The latest release of Stockwell is available on the [Python Package Index][PyPI-link]. You can install it easily through `pip`: pip install stockwell ### Installation from source If no precompiled package is available for you architecture on PyPI, or if you want to work on the source code, you will need to compile this package from source. To obtain the source code, download the latest release from the [releases page][releases-link], or clone the GitHub project. #### C compiler Part of Stockwell is written in C, so you will need a C compiler. On Linux (Debian or Ubuntu), install the `build-essential` package: sudo apt install build-essential On macOS, install the XCode Command Line Tools: xcode-select --install On Windows, install the [Microsoft C++ Build Tools]. #### FFTW To compile Stockwell, you will need to have [FFTW] installed. If you use [Anaconda] (Linux, macOS, Windows): conda install fftw If you use Homebrew (macOS) brew install fftw If you use `apt` (Debian or Ubuntu) sudo apt install libfftw3-dev #### Install the Python package from source Finally, install this Python package using pip: pip install . Or, alternatively, in "editable" mode: pip install -e . ## Usage Example usage: ```python import numpy as np from scipy.signal import chirp import matplotlib.pyplot as plt from stockwell import st t = np.linspace(0, 10, 5001) w = chirp(t, f0=12.5, f1=2.5, t1=10, method='linear') fmin = 0 # Hz fmax = 25 # Hz df = 1./(t[-1]-t[0]) # sampling step in frequency domain (Hz) fmin_samples = int(fmin/df) fmax_samples = int(fmax/df) stock = st.st(w, fmin_samples, fmax_samples) extent = (t[0], t[-1], fmin, fmax) fig, ax = plt.subplots(2, 1, sharex=True) ax[0].plot(t, w) ax[0].set(ylabel='amplitude') ax[1].imshow(np.abs(stock), origin='lower', extent=extent) ax[1].axis('tight') ax[1].set(xlabel='time (s)', ylabel='frequency (Hz)') plt.show() ``` You should get the following output: ![stockwell.png](https://cdn.jsdelivr.net/gh/claudiodsf/stockwell/stockwell.png) You can also compute the inverse Stockwell transform, ex: ```python inv_stock = st.ist(stock, fmin_samples, fmax_samples) fig, ax = plt.subplots(2, 1, sharex=True) ax[0].plot(t, w, label='original signal') ax[0].plot(t, inv_stock, label='inverse Stockwell') ax[0].set(ylabel='amplitude') ax[0].legend(loc='upper right') ax[1].plot(t, w - inv_stock) ax[1].set_xlim(0, 10) ax[1].set(xlabel='time (s)', ylabel='amplitude difference') plt.show() ``` ![inv_stockwell.png](https://cdn.jsdelivr.net/gh/claudiodsf/stockwell/inv_stockwell.png) ## References Stockwell, R.G., Mansinha, L. & Lowe, R.P., 1996. Localization of the complex spectrum: the S transform, IEEE Trans. Signal Process., 44(4), 998–1001, doi:[10.1109/78.492555](https://doi.org/10.1109/78.492555) [S transform on Wikipedia]. [NIMH MEG Core Facility]: https://kurage.nimh.nih.gov/meglab/Meg/Stockwell [cf-badge]: http://img.shields.io/conda/vn/conda-forge/stockwell.svg [cf-link]: https://anaconda.org/conda-forge/stockwell [PyPI-badge]: http://img.shields.io/pypi/v/stockwell.svg [PyPI-link]: https://pypi.python.org/pypi/stockwell [license-badge]: https://img.shields.io/badge/license-GPLv3-green [license-link]: https://www.gnu.org/licenses/gpl-3.0.html [releases-link]: https://github.com/claudiodsf/stockwell/releases [Anaconda]: https://www.anaconda.com/products/individual [Microsoft C++ Build Tools]: https://visualstudio.microsoft.com/visual-cpp-build-tools [FFTW]: http://www.fftw.org [S transform on Wikipedia]: https://en.wikipedia.org/wiki/S_transform %package help Summary: Development documents and examples for stockwell Provides: python3-stockwell-doc %description help # Stockwell Python package for time-frequency analysis through Stockwell transform. Based on original code from [NIMH MEG Core Facility]. [![cf-badge]][cf-link] [![PyPI-badge]][PyPI-link] [![license-badge]][license-link] ## Installation ### Using Anaconda If you use [Anaconda], the latest release of Stockwell is available via [conda-forge][cf-link]. To install, simply run: conda install -c conda-forge stockwell ### Using pip and PyPI The latest release of Stockwell is available on the [Python Package Index][PyPI-link]. You can install it easily through `pip`: pip install stockwell ### Installation from source If no precompiled package is available for you architecture on PyPI, or if you want to work on the source code, you will need to compile this package from source. To obtain the source code, download the latest release from the [releases page][releases-link], or clone the GitHub project. #### C compiler Part of Stockwell is written in C, so you will need a C compiler. On Linux (Debian or Ubuntu), install the `build-essential` package: sudo apt install build-essential On macOS, install the XCode Command Line Tools: xcode-select --install On Windows, install the [Microsoft C++ Build Tools]. #### FFTW To compile Stockwell, you will need to have [FFTW] installed. If you use [Anaconda] (Linux, macOS, Windows): conda install fftw If you use Homebrew (macOS) brew install fftw If you use `apt` (Debian or Ubuntu) sudo apt install libfftw3-dev #### Install the Python package from source Finally, install this Python package using pip: pip install . Or, alternatively, in "editable" mode: pip install -e . ## Usage Example usage: ```python import numpy as np from scipy.signal import chirp import matplotlib.pyplot as plt from stockwell import st t = np.linspace(0, 10, 5001) w = chirp(t, f0=12.5, f1=2.5, t1=10, method='linear') fmin = 0 # Hz fmax = 25 # Hz df = 1./(t[-1]-t[0]) # sampling step in frequency domain (Hz) fmin_samples = int(fmin/df) fmax_samples = int(fmax/df) stock = st.st(w, fmin_samples, fmax_samples) extent = (t[0], t[-1], fmin, fmax) fig, ax = plt.subplots(2, 1, sharex=True) ax[0].plot(t, w) ax[0].set(ylabel='amplitude') ax[1].imshow(np.abs(stock), origin='lower', extent=extent) ax[1].axis('tight') ax[1].set(xlabel='time (s)', ylabel='frequency (Hz)') plt.show() ``` You should get the following output: ![stockwell.png](https://cdn.jsdelivr.net/gh/claudiodsf/stockwell/stockwell.png) You can also compute the inverse Stockwell transform, ex: ```python inv_stock = st.ist(stock, fmin_samples, fmax_samples) fig, ax = plt.subplots(2, 1, sharex=True) ax[0].plot(t, w, label='original signal') ax[0].plot(t, inv_stock, label='inverse Stockwell') ax[0].set(ylabel='amplitude') ax[0].legend(loc='upper right') ax[1].plot(t, w - inv_stock) ax[1].set_xlim(0, 10) ax[1].set(xlabel='time (s)', ylabel='amplitude difference') plt.show() ``` ![inv_stockwell.png](https://cdn.jsdelivr.net/gh/claudiodsf/stockwell/inv_stockwell.png) ## References Stockwell, R.G., Mansinha, L. & Lowe, R.P., 1996. Localization of the complex spectrum: the S transform, IEEE Trans. Signal Process., 44(4), 998–1001, doi:[10.1109/78.492555](https://doi.org/10.1109/78.492555) [S transform on Wikipedia]. [NIMH MEG Core Facility]: https://kurage.nimh.nih.gov/meglab/Meg/Stockwell [cf-badge]: http://img.shields.io/conda/vn/conda-forge/stockwell.svg [cf-link]: https://anaconda.org/conda-forge/stockwell [PyPI-badge]: http://img.shields.io/pypi/v/stockwell.svg [PyPI-link]: https://pypi.python.org/pypi/stockwell [license-badge]: https://img.shields.io/badge/license-GPLv3-green [license-link]: https://www.gnu.org/licenses/gpl-3.0.html [releases-link]: https://github.com/claudiodsf/stockwell/releases [Anaconda]: https://www.anaconda.com/products/individual [Microsoft C++ Build Tools]: https://visualstudio.microsoft.com/visual-cpp-build-tools [FFTW]: http://www.fftw.org [S transform on Wikipedia]: https://en.wikipedia.org/wiki/S_transform %prep %autosetup -n stockwell-1.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-stockwell -f filelist.lst %dir %{python3_sitearch}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 1.1-1 - Package Spec generated