%global _empty_manifest_terminate_build 0 Name: python-impyute Version: 0.0.8 Release: 1 Summary: Cross-sectional and time-series data imputation algorithms License: GPL-3.0 URL: http://impyute.readthedocs.io/en/latest/ Source0: https://mirrors.aliyun.com/pypi/web/packages/67/38/02f1c2948d3c8ef198996885a30c6b65fb739ef36ed634d6720938ec163b/impyute-0.0.8.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scipy Requires: python3-scikit-learn Requires: python3-pylint Requires: python3-sphinx %description Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do. >>> n = 5 >>> arr = np.random.uniform(high=6, size=(n, n)) >>> for _ in range(3): >>> arr[np.random.randint(n), np.random.randint(n)] = np.nan >>> print(arr) array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, np.nan], [4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805], [0.79802036, np.nan, 0.51729349, 5.06533123, 3.70669172], [1.30848217, 2.08386584, 2.29894541, np.nan, 3.38661392], [2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]]) >>> import impyute as impy >>> print(impy.mean(arr)) array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, 3.7122365], [4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805], [0.79802036, 1.99128649, 0.51729349, 5.06533123, 3.70669172], [1.30848217, 2.08386584, 2.29894541, 3.08994336, 3.38661392], [2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]]) %package -n python3-impyute Summary: Cross-sectional and time-series data imputation algorithms Provides: python-impyute BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-impyute Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do. >>> n = 5 >>> arr = np.random.uniform(high=6, size=(n, n)) >>> for _ in range(3): >>> arr[np.random.randint(n), np.random.randint(n)] = np.nan >>> print(arr) array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, np.nan], [4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805], [0.79802036, np.nan, 0.51729349, 5.06533123, 3.70669172], [1.30848217, 2.08386584, 2.29894541, np.nan, 3.38661392], [2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]]) >>> import impyute as impy >>> print(impy.mean(arr)) array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, 3.7122365], [4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805], [0.79802036, 1.99128649, 0.51729349, 5.06533123, 3.70669172], [1.30848217, 2.08386584, 2.29894541, 3.08994336, 3.38661392], [2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]]) %package help Summary: Development documents and examples for impyute Provides: python3-impyute-doc %description help Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do. >>> n = 5 >>> arr = np.random.uniform(high=6, size=(n, n)) >>> for _ in range(3): >>> arr[np.random.randint(n), np.random.randint(n)] = np.nan >>> print(arr) array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, np.nan], [4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805], [0.79802036, np.nan, 0.51729349, 5.06533123, 3.70669172], [1.30848217, 2.08386584, 2.29894541, np.nan, 3.38661392], [2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]]) >>> import impyute as impy >>> print(impy.mean(arr)) array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, 3.7122365], [4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805], [0.79802036, 1.99128649, 0.51729349, 5.06533123, 3.70669172], [1.30848217, 2.08386584, 2.29894541, 3.08994336, 3.38661392], [2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]]) %prep %autosetup -n impyute-0.0.8 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-impyute -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 0.0.8-1 - Package Spec generated