%global _empty_manifest_terminate_build 0 Name: python-phiflow Version: 2.4.0 Release: 1 Summary: Differentiable PDE solving framework for machine learning License: MIT URL: https://github.com/tum-pbs/PhiFlow Source0: https://mirrors.aliyun.com/pypi/web/packages/3f/66/54b9d31001cff546e9bcd80415c4e7ff30cdfad4dd5042e0764e9207ffad/phiflow-2.4.0.tar.gz BuildArch: noarch %description # PhiFlow [**Homepage**](https://github.com/tum-pbs/PhiFlow)     [**Documentation**](https://tum-pbs.github.io/PhiFlow/)     [**API**](https://tum-pbs.github.io/PhiFlow/phi)     [**Demos**](https://github.com/tum-pbs/PhiFlow/tree/master/demos)     [ **Fluids Tutorial**](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Fluids_Tutorial.ipynb#offline=true&sandboxMode=true)     [ **Playground**](https://colab.research.google.com/drive/1zBlQbmNguRt-Vt332YvdTqlV4DBcus2S#offline=true&sandboxMode=true) PhiFlow is an open-source simulation toolkit built for optimization and machine learning applications. It is written mostly in Python and can be used with NumPy, TensorFlow, Jax or PyTorch. The close integration with machine learning frameworks allows it to leverage their automatic differentiation functionality, making it easy to build end-to-end differentiable functions involving both learning models and physics simulations. See the [installation Instructions](https://tum-pbs.github.io/PhiFlow/Installation_Instructions.html) on how to compile the optional custom CUDA operations. %package -n python3-phiflow Summary: Differentiable PDE solving framework for machine learning Provides: python-phiflow BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-phiflow # PhiFlow [**Homepage**](https://github.com/tum-pbs/PhiFlow)     [**Documentation**](https://tum-pbs.github.io/PhiFlow/)     [**API**](https://tum-pbs.github.io/PhiFlow/phi)     [**Demos**](https://github.com/tum-pbs/PhiFlow/tree/master/demos)     [ **Fluids Tutorial**](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Fluids_Tutorial.ipynb#offline=true&sandboxMode=true)     [ **Playground**](https://colab.research.google.com/drive/1zBlQbmNguRt-Vt332YvdTqlV4DBcus2S#offline=true&sandboxMode=true) PhiFlow is an open-source simulation toolkit built for optimization and machine learning applications. It is written mostly in Python and can be used with NumPy, TensorFlow, Jax or PyTorch. The close integration with machine learning frameworks allows it to leverage their automatic differentiation functionality, making it easy to build end-to-end differentiable functions involving both learning models and physics simulations. See the [installation Instructions](https://tum-pbs.github.io/PhiFlow/Installation_Instructions.html) on how to compile the optional custom CUDA operations. %package help Summary: Development documents and examples for phiflow Provides: python3-phiflow-doc %description help # PhiFlow [**Homepage**](https://github.com/tum-pbs/PhiFlow)     [**Documentation**](https://tum-pbs.github.io/PhiFlow/)     [**API**](https://tum-pbs.github.io/PhiFlow/phi)     [**Demos**](https://github.com/tum-pbs/PhiFlow/tree/master/demos)     [ **Fluids Tutorial**](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Fluids_Tutorial.ipynb#offline=true&sandboxMode=true)     [ **Playground**](https://colab.research.google.com/drive/1zBlQbmNguRt-Vt332YvdTqlV4DBcus2S#offline=true&sandboxMode=true) PhiFlow is an open-source simulation toolkit built for optimization and machine learning applications. It is written mostly in Python and can be used with NumPy, TensorFlow, Jax or PyTorch. The close integration with machine learning frameworks allows it to leverage their automatic differentiation functionality, making it easy to build end-to-end differentiable functions involving both learning models and physics simulations. See the [installation Instructions](https://tum-pbs.github.io/PhiFlow/Installation_Instructions.html) on how to compile the optional custom CUDA operations. %prep %autosetup -n phiflow-2.4.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-phiflow -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 2.4.0-1 - Package Spec generated