%global _empty_manifest_terminate_build 0 Name: python-xmca Version: 1.4.2.post2 Release: 1 Summary: Maximum Covariance Analysis in Python License: MIT URL: https://github.com/nicrie/xmca Source0: https://mirrors.aliyun.com/pypi/web/packages/51/05/003c6f3ae7d6bd2747aefbd333ac2b653632db6978dda7b6663b3fbdd045/xmca-1.4.2.post2.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-xarray Requires: python3-statsmodels Requires: python3-matplotlib Requires: python3-cartopy Requires: python3-parameterized Requires: python3-netcdf4 Requires: python3-h5netcdf Requires: python3-tqdm Requires: python3-PyYAML %description # xMCA | Maximum Covariance Analysis in Python [![version](https://img.shields.io/pypi/v/xmca?color=f2cc8f&label=PyPI)](https://pypi.org/project/xmca/) ![GitHub Workflow Status](https://img.shields.io/github/workflow/status/nicrie/xmca/build-pip?color=81b29a) [![Documentation Status](https://img.shields.io/readthedocs/xmca/latest?color=81b29a)](https://pyxmca.readthedocs.io/en/latest/?badge=latest) [![codecov.io](https://codecov.io/github/nicrie/xmca/coverage.svg?branch=master)](https://codecov.io/github/nicrie/xmca?branch=master) [![downloads](https://img.shields.io/pypi/dm/xmca?color=f2cc8f)](https://pypi.org/project/xmca/) [![DOI](https://zenodo.org/badge/278134135.svg?color=f2cc8f)](https://zenodo.org/badge/latestdoi/278134135) The aim of this package is to provide a flexible tool for the climate science community to perform **Maximum Covariance Analysis (MCA)** in a simple and consistent way. Given the huge popularity of [`xarray`][xarray] in the climate science community, `xmca` supports `xarray.DataArray` as well as `numpy.ndarray` as input formats. ![Example Figure](figs/example-plot2.png) *Mode 2 of complex rotated Maximum Covariance Analysis showing the shared dynamics of SST and continental precipitation associated to ENSO between 1980 and 2020.* ## :beginner: What is MCA? MCA maximises the temporal covariance between two different data fields and is closely related to Principal Component Analysis (**PCA**) / Empirical Orthogonal Function analysis (**EOF analysis**). While EOF analysis maximises the variance within a single data field, MCA allows to extract the dominant co-varying patterns between two different data fields. When the two input fields are the same, MCA reduces to standard EOF analysis. For the mathematical understanding please have a look at e.g. [Bretherton et al.][bretherton-paper] or the [lecture material][mca-material] written by C. Bretherton. ## :star: New in release 1.4.x - Much faster and more memory-efficient algorithm - Significance testing of individual modes via - *Rule N* ([Overland & Preisendorfer 1982][ruleN]) - Bootstrapping/permutation schemes + block-wise approach for autocorrelated data - Iterative permutation ([Winkler et al. 2020][winkler]) - Period parameter of `solve` method provides more flexibility to exponential extension, making complex MCA more stable - Fixed missing coslat weighting when saving a model ([Issue 25][issue25]) ## :pushpin: Core Features | | Standard | Rotated | Complex | Complex Rotated | |-------------- |---------- |---------- |--------- |------------------ | | EOF analysis |[:heavy_check_mark:][pca]|[:heavy_check_mark:][rotated-pca]|[:heavy_check_mark:][complex-pca]|[:heavy_check_mark:][crpca]| | MCA |[:heavy_check_mark:][mca]|[:heavy_check_mark:][rotated-mca]|[:heavy_check_mark:][xmca]|[:heavy_check_mark:][xmca]| \* *click on check marks for reference* \ \** *Complex rotated MCA is also available as a pre-print on [arXiv][arxiv].* ## :wrench: Installation Installation is simply done via pip install xmca If you have problems during the installation please consult the documentation or raise an issue here on Github. ## :newspaper: Documentation A tutorial to get you started as well as the full API can be found in the [documentation](https://pyxmca.readthedocs.io/en/latest/index.html). ## :zap: Quickstart Import the package ```py from xmca.array import MCA # use with np.ndarray from xmca.xarray import xMCA # use with xr.DataArray ``` As an example, we take North American surface temperatures shipped with `xarray`. *Note: only works with `xr.DataArray`, not `xr.Dataset`*. ```py import xarray as xr # only needed to obtain test data # split data arbitrarily into west and east coast data = xr.tutorial.open_dataset('air_temperature').air west = data.sel(lon=slice(200, 260)) east = data.sel(lon=slice(260, 360)) ``` #### PCA / EOF analysis Construct a model with only one field and solve it to perform standard PCA / EOF analysis. ```py pca = xMCA(west) # PCA of west coast pca.solve(complexify=False) # True for complex PCA svals = pca.singular_values() # singular vales = eigenvalues for PCA expvar = pca.explained_variance() # explained variance pcs = pca.pcs() # Principal component scores (PCs) eofs = pca.eofs() # spatial patterns (EOFs) ``` Obtaining a **Varimax/Promax-rotated** solution can be achieved by rotating the model choosing the number of EOFs to be rotated (`n_rot`) as well as the Promax parameter (`power`). Here, `power=1` equals a Varimax-rotated solution. ```py pca.rotate(n_rot=10, power=1) expvar_rot = pca.explained_variance() # explained variance pcs_rot = pca.pcs() # Principal component scores (PCs) eofs_rot = pca.eofs() # spatial patterns (EOFs) ``` #### MCA Same as for PCA / EOF analysis, but with two input fields instead of one. ```py mca = xMCA(west, east) # MCA of field A and B mca.solve(complexify=False) # True for complex MCA eigenvalues = mca.singular_values() # singular vales pcs = mca.pcs() # expansion coefficient (PCs) eofs = mca.eofs() # spatial patterns (EOFs) ``` #### Significance analysis A simple way of estimating the significance of the obtained modes is by running Monte Carlo simulations based on uncorrelated Gaussian white noise known as **Rule N** (Overland and Preisendorfer 1982). Here we create 200 of such synthetic data sets and compare the synthetic with the real singular spectrum to assess significance. ```py surr = mca.rule_n(200) median = surr.median('run') q99 = surr.quantile(.99, dim='run') q01 = surr.quantile(.01, dim='run') cutoff = np.sum((svals - q99 > 0)).values # first 8 modes significant fig = plt.figure(figsize=(10, 4)) ax = fig.add_subplot(111) svals.plot(ax=ax, yscale='log', label='true') median.plot(ax=ax, yscale='log', color='.5', label='rule N') q99.plot(ax=ax, yscale='log', color='.5', ls=':') q01.plot(ax=ax, yscale='log', color='.5', ls=':') ax.axvline(cutoff + 0.5, ls=':') ax.set_xlim(-2, 200) ax.set_ylim(1e-1, 2.5e4) ax.set_title('Significance based on Rule N') ax.legend() ``` ![Example Figure Mode1](figs/rule-n.png) *The first 8 modes are significant according to rule N using 200 synthetic runs.* #### Saving/loading an analysis ```py mca.save_analysis('my_analysis') # this will save the data and a respective # info file. The files will be stored in a # special directory mca2 = xMCA() # create a new, empty instance mca2.load_analysis('my_analysis/info.xmca') # analysis can be # loaded via specifying the path to the # info file created earlier ``` #### Quickly inspect your results visually The package provides a method to plot individual modes. ```py mca2.set_field_names('West', 'East') pkwargs = {'orientation' : 'vertical'} mca2.plot(mode=1, **pkwargs) ``` ![Example Figure Mode1](figs/xmca-example-mode1.png) *Result of default plot method after performing MCA on T2m of North American west and east coast showing mode 1.* You may want to modify the plot for some better optics: ```py from cartopy.crs import EqualEarth # for different map projections # map projections for "left" and "right" field projections = { 'left': EqualEarth(), 'right': EqualEarth() } pkwargs = { "figsize" : (8, 5), "orientation" : 'vertical', 'cmap_eof' : 'BrBG', # colormap amplitude "projection" : projections, } mca2.plot(mode=3, **pkwargs) ``` ![Example Figure Mode 3](figs/xmca-example-mode3.png) You can save the plot to your local disk as a ``.png`` file via ```py skwargs={'dpi':200} mca2.save_plot(mode=3, plot_kwargs=pkwargs, save_kwargs=skwargs) ``` ## :bookmark: Please cite I am just starting my career as a scientist. Feedback on my scientific work is therefore important to me in order to assess which of my work advances the scientific community. As such, if you use the package for your own research and find it helpful, I would appreciate feedback here on [Github](https://github.com/nicrie/xmca/issues/new), via [email](mailto:niclasrieger@gmail.com), or as a [citation](http://doi.org/10.5281/zenodo.4749830): Niclas Rieger, 2021: nicrie/xmca: version x.y.z. doi:[10.5281/zenodo.4749830](https://doi.org/10.5281/zenodo.4749830). ## :muscle: Credits Kudos to the developers and contributors of the following Github projects which I initially used myself and used as an inspiration: * [ajdawson/eofs](https://github.com/ajdawson/eofs) * [Yefee/xMCA](https://github.com/Yefee/xMCA) And of course credits to the developers of the extremely useful packages * [xarray](http://xarray.pydata.org/en/stable/) * [cartopy](https://scitools.org.uk/cartopy/docs/latest/) [xarray]: http://xarray.pydata.org/en/stable/ [cartopy]: https://scitools.org.uk/cartopy/docs/latest/installing.html [pca]: https://en.wikipedia.org/wiki/Empirical_orthogonal_functions [mca]: ftp://eos.atmos.washington.edu/pub/breth/papers/1992/SVD-theory.pdf [mca-material]: https://atmos.washington.edu/~breth/classes/AS552/lect/lect22.pdf [bretherton-paper]: https://journals.ametsoc.org/view/journals/clim/5/6/1520-0442_1992_005_0541_aiomff_2_0_co_2.xml [rotated-pca]: https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/empirical-orthogonal-function-eof-analysis-and-rotated-eof-analysis [rotated-mca]: https://journals.ametsoc.org/jcli/article/8/11/2631/35764/Orthogonal-Rotation-of-Spatial-Patterns-Derived [varimax]: https://en.wikipedia.org/wiki/Varimax_rotation [promax]: https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8317.1964.tb00244.x [complex-pca]: https://journals.ametsoc.org/doi/abs/10.1175/1520-0450(1984)023%3C1660%3ACPCATA%3E2.0.CO%3B2 [crpca]: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3370140706 [theta]: https://linkinghub.elsevier.com/retrieve/pii/S0169207016300243 [xmca]: https://doi.org/10.1175/JCLI-D-21-0244.1 [arxiv]: https://arxiv.org/abs/2105.04618 [winkler]: https://www.sciencedirect.com/science/article/pii/S1053811920305516 [issue25]: https://github.com/nicrie/xmca/issues/25 [ruleN]: https://doi.org/10.1175/1520-0493(1982)110<0001:ASTFPC>2.0.CO;2 %package -n python3-xmca Summary: Maximum Covariance Analysis in Python Provides: python-xmca BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-xmca # xMCA | Maximum Covariance Analysis in Python [![version](https://img.shields.io/pypi/v/xmca?color=f2cc8f&label=PyPI)](https://pypi.org/project/xmca/) ![GitHub Workflow Status](https://img.shields.io/github/workflow/status/nicrie/xmca/build-pip?color=81b29a) [![Documentation Status](https://img.shields.io/readthedocs/xmca/latest?color=81b29a)](https://pyxmca.readthedocs.io/en/latest/?badge=latest) [![codecov.io](https://codecov.io/github/nicrie/xmca/coverage.svg?branch=master)](https://codecov.io/github/nicrie/xmca?branch=master) [![downloads](https://img.shields.io/pypi/dm/xmca?color=f2cc8f)](https://pypi.org/project/xmca/) [![DOI](https://zenodo.org/badge/278134135.svg?color=f2cc8f)](https://zenodo.org/badge/latestdoi/278134135) The aim of this package is to provide a flexible tool for the climate science community to perform **Maximum Covariance Analysis (MCA)** in a simple and consistent way. Given the huge popularity of [`xarray`][xarray] in the climate science community, `xmca` supports `xarray.DataArray` as well as `numpy.ndarray` as input formats. ![Example Figure](figs/example-plot2.png) *Mode 2 of complex rotated Maximum Covariance Analysis showing the shared dynamics of SST and continental precipitation associated to ENSO between 1980 and 2020.* ## :beginner: What is MCA? MCA maximises the temporal covariance between two different data fields and is closely related to Principal Component Analysis (**PCA**) / Empirical Orthogonal Function analysis (**EOF analysis**). While EOF analysis maximises the variance within a single data field, MCA allows to extract the dominant co-varying patterns between two different data fields. When the two input fields are the same, MCA reduces to standard EOF analysis. For the mathematical understanding please have a look at e.g. [Bretherton et al.][bretherton-paper] or the [lecture material][mca-material] written by C. Bretherton. ## :star: New in release 1.4.x - Much faster and more memory-efficient algorithm - Significance testing of individual modes via - *Rule N* ([Overland & Preisendorfer 1982][ruleN]) - Bootstrapping/permutation schemes + block-wise approach for autocorrelated data - Iterative permutation ([Winkler et al. 2020][winkler]) - Period parameter of `solve` method provides more flexibility to exponential extension, making complex MCA more stable - Fixed missing coslat weighting when saving a model ([Issue 25][issue25]) ## :pushpin: Core Features | | Standard | Rotated | Complex | Complex Rotated | |-------------- |---------- |---------- |--------- |------------------ | | EOF analysis |[:heavy_check_mark:][pca]|[:heavy_check_mark:][rotated-pca]|[:heavy_check_mark:][complex-pca]|[:heavy_check_mark:][crpca]| | MCA |[:heavy_check_mark:][mca]|[:heavy_check_mark:][rotated-mca]|[:heavy_check_mark:][xmca]|[:heavy_check_mark:][xmca]| \* *click on check marks for reference* \ \** *Complex rotated MCA is also available as a pre-print on [arXiv][arxiv].* ## :wrench: Installation Installation is simply done via pip install xmca If you have problems during the installation please consult the documentation or raise an issue here on Github. ## :newspaper: Documentation A tutorial to get you started as well as the full API can be found in the [documentation](https://pyxmca.readthedocs.io/en/latest/index.html). ## :zap: Quickstart Import the package ```py from xmca.array import MCA # use with np.ndarray from xmca.xarray import xMCA # use with xr.DataArray ``` As an example, we take North American surface temperatures shipped with `xarray`. *Note: only works with `xr.DataArray`, not `xr.Dataset`*. ```py import xarray as xr # only needed to obtain test data # split data arbitrarily into west and east coast data = xr.tutorial.open_dataset('air_temperature').air west = data.sel(lon=slice(200, 260)) east = data.sel(lon=slice(260, 360)) ``` #### PCA / EOF analysis Construct a model with only one field and solve it to perform standard PCA / EOF analysis. ```py pca = xMCA(west) # PCA of west coast pca.solve(complexify=False) # True for complex PCA svals = pca.singular_values() # singular vales = eigenvalues for PCA expvar = pca.explained_variance() # explained variance pcs = pca.pcs() # Principal component scores (PCs) eofs = pca.eofs() # spatial patterns (EOFs) ``` Obtaining a **Varimax/Promax-rotated** solution can be achieved by rotating the model choosing the number of EOFs to be rotated (`n_rot`) as well as the Promax parameter (`power`). Here, `power=1` equals a Varimax-rotated solution. ```py pca.rotate(n_rot=10, power=1) expvar_rot = pca.explained_variance() # explained variance pcs_rot = pca.pcs() # Principal component scores (PCs) eofs_rot = pca.eofs() # spatial patterns (EOFs) ``` #### MCA Same as for PCA / EOF analysis, but with two input fields instead of one. ```py mca = xMCA(west, east) # MCA of field A and B mca.solve(complexify=False) # True for complex MCA eigenvalues = mca.singular_values() # singular vales pcs = mca.pcs() # expansion coefficient (PCs) eofs = mca.eofs() # spatial patterns (EOFs) ``` #### Significance analysis A simple way of estimating the significance of the obtained modes is by running Monte Carlo simulations based on uncorrelated Gaussian white noise known as **Rule N** (Overland and Preisendorfer 1982). Here we create 200 of such synthetic data sets and compare the synthetic with the real singular spectrum to assess significance. ```py surr = mca.rule_n(200) median = surr.median('run') q99 = surr.quantile(.99, dim='run') q01 = surr.quantile(.01, dim='run') cutoff = np.sum((svals - q99 > 0)).values # first 8 modes significant fig = plt.figure(figsize=(10, 4)) ax = fig.add_subplot(111) svals.plot(ax=ax, yscale='log', label='true') median.plot(ax=ax, yscale='log', color='.5', label='rule N') q99.plot(ax=ax, yscale='log', color='.5', ls=':') q01.plot(ax=ax, yscale='log', color='.5', ls=':') ax.axvline(cutoff + 0.5, ls=':') ax.set_xlim(-2, 200) ax.set_ylim(1e-1, 2.5e4) ax.set_title('Significance based on Rule N') ax.legend() ``` ![Example Figure Mode1](figs/rule-n.png) *The first 8 modes are significant according to rule N using 200 synthetic runs.* #### Saving/loading an analysis ```py mca.save_analysis('my_analysis') # this will save the data and a respective # info file. The files will be stored in a # special directory mca2 = xMCA() # create a new, empty instance mca2.load_analysis('my_analysis/info.xmca') # analysis can be # loaded via specifying the path to the # info file created earlier ``` #### Quickly inspect your results visually The package provides a method to plot individual modes. ```py mca2.set_field_names('West', 'East') pkwargs = {'orientation' : 'vertical'} mca2.plot(mode=1, **pkwargs) ``` ![Example Figure Mode1](figs/xmca-example-mode1.png) *Result of default plot method after performing MCA on T2m of North American west and east coast showing mode 1.* You may want to modify the plot for some better optics: ```py from cartopy.crs import EqualEarth # for different map projections # map projections for "left" and "right" field projections = { 'left': EqualEarth(), 'right': EqualEarth() } pkwargs = { "figsize" : (8, 5), "orientation" : 'vertical', 'cmap_eof' : 'BrBG', # colormap amplitude "projection" : projections, } mca2.plot(mode=3, **pkwargs) ``` ![Example Figure Mode 3](figs/xmca-example-mode3.png) You can save the plot to your local disk as a ``.png`` file via ```py skwargs={'dpi':200} mca2.save_plot(mode=3, plot_kwargs=pkwargs, save_kwargs=skwargs) ``` ## :bookmark: Please cite I am just starting my career as a scientist. Feedback on my scientific work is therefore important to me in order to assess which of my work advances the scientific community. As such, if you use the package for your own research and find it helpful, I would appreciate feedback here on [Github](https://github.com/nicrie/xmca/issues/new), via [email](mailto:niclasrieger@gmail.com), or as a [citation](http://doi.org/10.5281/zenodo.4749830): Niclas Rieger, 2021: nicrie/xmca: version x.y.z. doi:[10.5281/zenodo.4749830](https://doi.org/10.5281/zenodo.4749830). ## :muscle: Credits Kudos to the developers and contributors of the following Github projects which I initially used myself and used as an inspiration: * [ajdawson/eofs](https://github.com/ajdawson/eofs) * [Yefee/xMCA](https://github.com/Yefee/xMCA) And of course credits to the developers of the extremely useful packages * [xarray](http://xarray.pydata.org/en/stable/) * [cartopy](https://scitools.org.uk/cartopy/docs/latest/) [xarray]: http://xarray.pydata.org/en/stable/ [cartopy]: https://scitools.org.uk/cartopy/docs/latest/installing.html [pca]: https://en.wikipedia.org/wiki/Empirical_orthogonal_functions [mca]: ftp://eos.atmos.washington.edu/pub/breth/papers/1992/SVD-theory.pdf [mca-material]: https://atmos.washington.edu/~breth/classes/AS552/lect/lect22.pdf [bretherton-paper]: https://journals.ametsoc.org/view/journals/clim/5/6/1520-0442_1992_005_0541_aiomff_2_0_co_2.xml [rotated-pca]: https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/empirical-orthogonal-function-eof-analysis-and-rotated-eof-analysis [rotated-mca]: https://journals.ametsoc.org/jcli/article/8/11/2631/35764/Orthogonal-Rotation-of-Spatial-Patterns-Derived [varimax]: https://en.wikipedia.org/wiki/Varimax_rotation [promax]: https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8317.1964.tb00244.x [complex-pca]: https://journals.ametsoc.org/doi/abs/10.1175/1520-0450(1984)023%3C1660%3ACPCATA%3E2.0.CO%3B2 [crpca]: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3370140706 [theta]: https://linkinghub.elsevier.com/retrieve/pii/S0169207016300243 [xmca]: https://doi.org/10.1175/JCLI-D-21-0244.1 [arxiv]: https://arxiv.org/abs/2105.04618 [winkler]: https://www.sciencedirect.com/science/article/pii/S1053811920305516 [issue25]: https://github.com/nicrie/xmca/issues/25 [ruleN]: https://doi.org/10.1175/1520-0493(1982)110<0001:ASTFPC>2.0.CO;2 %package help Summary: Development documents and examples for xmca Provides: python3-xmca-doc %description help # xMCA | Maximum Covariance Analysis in Python [![version](https://img.shields.io/pypi/v/xmca?color=f2cc8f&label=PyPI)](https://pypi.org/project/xmca/) ![GitHub Workflow Status](https://img.shields.io/github/workflow/status/nicrie/xmca/build-pip?color=81b29a) [![Documentation Status](https://img.shields.io/readthedocs/xmca/latest?color=81b29a)](https://pyxmca.readthedocs.io/en/latest/?badge=latest) [![codecov.io](https://codecov.io/github/nicrie/xmca/coverage.svg?branch=master)](https://codecov.io/github/nicrie/xmca?branch=master) [![downloads](https://img.shields.io/pypi/dm/xmca?color=f2cc8f)](https://pypi.org/project/xmca/) [![DOI](https://zenodo.org/badge/278134135.svg?color=f2cc8f)](https://zenodo.org/badge/latestdoi/278134135) The aim of this package is to provide a flexible tool for the climate science community to perform **Maximum Covariance Analysis (MCA)** in a simple and consistent way. Given the huge popularity of [`xarray`][xarray] in the climate science community, `xmca` supports `xarray.DataArray` as well as `numpy.ndarray` as input formats. ![Example Figure](figs/example-plot2.png) *Mode 2 of complex rotated Maximum Covariance Analysis showing the shared dynamics of SST and continental precipitation associated to ENSO between 1980 and 2020.* ## :beginner: What is MCA? MCA maximises the temporal covariance between two different data fields and is closely related to Principal Component Analysis (**PCA**) / Empirical Orthogonal Function analysis (**EOF analysis**). While EOF analysis maximises the variance within a single data field, MCA allows to extract the dominant co-varying patterns between two different data fields. When the two input fields are the same, MCA reduces to standard EOF analysis. For the mathematical understanding please have a look at e.g. [Bretherton et al.][bretherton-paper] or the [lecture material][mca-material] written by C. Bretherton. ## :star: New in release 1.4.x - Much faster and more memory-efficient algorithm - Significance testing of individual modes via - *Rule N* ([Overland & Preisendorfer 1982][ruleN]) - Bootstrapping/permutation schemes + block-wise approach for autocorrelated data - Iterative permutation ([Winkler et al. 2020][winkler]) - Period parameter of `solve` method provides more flexibility to exponential extension, making complex MCA more stable - Fixed missing coslat weighting when saving a model ([Issue 25][issue25]) ## :pushpin: Core Features | | Standard | Rotated | Complex | Complex Rotated | |-------------- |---------- |---------- |--------- |------------------ | | EOF analysis |[:heavy_check_mark:][pca]|[:heavy_check_mark:][rotated-pca]|[:heavy_check_mark:][complex-pca]|[:heavy_check_mark:][crpca]| | MCA |[:heavy_check_mark:][mca]|[:heavy_check_mark:][rotated-mca]|[:heavy_check_mark:][xmca]|[:heavy_check_mark:][xmca]| \* *click on check marks for reference* \ \** *Complex rotated MCA is also available as a pre-print on [arXiv][arxiv].* ## :wrench: Installation Installation is simply done via pip install xmca If you have problems during the installation please consult the documentation or raise an issue here on Github. ## :newspaper: Documentation A tutorial to get you started as well as the full API can be found in the [documentation](https://pyxmca.readthedocs.io/en/latest/index.html). ## :zap: Quickstart Import the package ```py from xmca.array import MCA # use with np.ndarray from xmca.xarray import xMCA # use with xr.DataArray ``` As an example, we take North American surface temperatures shipped with `xarray`. *Note: only works with `xr.DataArray`, not `xr.Dataset`*. ```py import xarray as xr # only needed to obtain test data # split data arbitrarily into west and east coast data = xr.tutorial.open_dataset('air_temperature').air west = data.sel(lon=slice(200, 260)) east = data.sel(lon=slice(260, 360)) ``` #### PCA / EOF analysis Construct a model with only one field and solve it to perform standard PCA / EOF analysis. ```py pca = xMCA(west) # PCA of west coast pca.solve(complexify=False) # True for complex PCA svals = pca.singular_values() # singular vales = eigenvalues for PCA expvar = pca.explained_variance() # explained variance pcs = pca.pcs() # Principal component scores (PCs) eofs = pca.eofs() # spatial patterns (EOFs) ``` Obtaining a **Varimax/Promax-rotated** solution can be achieved by rotating the model choosing the number of EOFs to be rotated (`n_rot`) as well as the Promax parameter (`power`). Here, `power=1` equals a Varimax-rotated solution. ```py pca.rotate(n_rot=10, power=1) expvar_rot = pca.explained_variance() # explained variance pcs_rot = pca.pcs() # Principal component scores (PCs) eofs_rot = pca.eofs() # spatial patterns (EOFs) ``` #### MCA Same as for PCA / EOF analysis, but with two input fields instead of one. ```py mca = xMCA(west, east) # MCA of field A and B mca.solve(complexify=False) # True for complex MCA eigenvalues = mca.singular_values() # singular vales pcs = mca.pcs() # expansion coefficient (PCs) eofs = mca.eofs() # spatial patterns (EOFs) ``` #### Significance analysis A simple way of estimating the significance of the obtained modes is by running Monte Carlo simulations based on uncorrelated Gaussian white noise known as **Rule N** (Overland and Preisendorfer 1982). Here we create 200 of such synthetic data sets and compare the synthetic with the real singular spectrum to assess significance. ```py surr = mca.rule_n(200) median = surr.median('run') q99 = surr.quantile(.99, dim='run') q01 = surr.quantile(.01, dim='run') cutoff = np.sum((svals - q99 > 0)).values # first 8 modes significant fig = plt.figure(figsize=(10, 4)) ax = fig.add_subplot(111) svals.plot(ax=ax, yscale='log', label='true') median.plot(ax=ax, yscale='log', color='.5', label='rule N') q99.plot(ax=ax, yscale='log', color='.5', ls=':') q01.plot(ax=ax, yscale='log', color='.5', ls=':') ax.axvline(cutoff + 0.5, ls=':') ax.set_xlim(-2, 200) ax.set_ylim(1e-1, 2.5e4) ax.set_title('Significance based on Rule N') ax.legend() ``` ![Example Figure Mode1](figs/rule-n.png) *The first 8 modes are significant according to rule N using 200 synthetic runs.* #### Saving/loading an analysis ```py mca.save_analysis('my_analysis') # this will save the data and a respective # info file. The files will be stored in a # special directory mca2 = xMCA() # create a new, empty instance mca2.load_analysis('my_analysis/info.xmca') # analysis can be # loaded via specifying the path to the # info file created earlier ``` #### Quickly inspect your results visually The package provides a method to plot individual modes. ```py mca2.set_field_names('West', 'East') pkwargs = {'orientation' : 'vertical'} mca2.plot(mode=1, **pkwargs) ``` ![Example Figure Mode1](figs/xmca-example-mode1.png) *Result of default plot method after performing MCA on T2m of North American west and east coast showing mode 1.* You may want to modify the plot for some better optics: ```py from cartopy.crs import EqualEarth # for different map projections # map projections for "left" and "right" field projections = { 'left': EqualEarth(), 'right': EqualEarth() } pkwargs = { "figsize" : (8, 5), "orientation" : 'vertical', 'cmap_eof' : 'BrBG', # colormap amplitude "projection" : projections, } mca2.plot(mode=3, **pkwargs) ``` ![Example Figure Mode 3](figs/xmca-example-mode3.png) You can save the plot to your local disk as a ``.png`` file via ```py skwargs={'dpi':200} mca2.save_plot(mode=3, plot_kwargs=pkwargs, save_kwargs=skwargs) ``` ## :bookmark: Please cite I am just starting my career as a scientist. Feedback on my scientific work is therefore important to me in order to assess which of my work advances the scientific community. As such, if you use the package for your own research and find it helpful, I would appreciate feedback here on [Github](https://github.com/nicrie/xmca/issues/new), via [email](mailto:niclasrieger@gmail.com), or as a [citation](http://doi.org/10.5281/zenodo.4749830): Niclas Rieger, 2021: nicrie/xmca: version x.y.z. doi:[10.5281/zenodo.4749830](https://doi.org/10.5281/zenodo.4749830). ## :muscle: Credits Kudos to the developers and contributors of the following Github projects which I initially used myself and used as an inspiration: * [ajdawson/eofs](https://github.com/ajdawson/eofs) * [Yefee/xMCA](https://github.com/Yefee/xMCA) And of course credits to the developers of the extremely useful packages * [xarray](http://xarray.pydata.org/en/stable/) * [cartopy](https://scitools.org.uk/cartopy/docs/latest/) [xarray]: http://xarray.pydata.org/en/stable/ [cartopy]: https://scitools.org.uk/cartopy/docs/latest/installing.html [pca]: https://en.wikipedia.org/wiki/Empirical_orthogonal_functions [mca]: ftp://eos.atmos.washington.edu/pub/breth/papers/1992/SVD-theory.pdf [mca-material]: https://atmos.washington.edu/~breth/classes/AS552/lect/lect22.pdf [bretherton-paper]: https://journals.ametsoc.org/view/journals/clim/5/6/1520-0442_1992_005_0541_aiomff_2_0_co_2.xml [rotated-pca]: https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/empirical-orthogonal-function-eof-analysis-and-rotated-eof-analysis [rotated-mca]: https://journals.ametsoc.org/jcli/article/8/11/2631/35764/Orthogonal-Rotation-of-Spatial-Patterns-Derived [varimax]: https://en.wikipedia.org/wiki/Varimax_rotation [promax]: https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8317.1964.tb00244.x [complex-pca]: https://journals.ametsoc.org/doi/abs/10.1175/1520-0450(1984)023%3C1660%3ACPCATA%3E2.0.CO%3B2 [crpca]: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3370140706 [theta]: https://linkinghub.elsevier.com/retrieve/pii/S0169207016300243 [xmca]: https://doi.org/10.1175/JCLI-D-21-0244.1 [arxiv]: https://arxiv.org/abs/2105.04618 [winkler]: https://www.sciencedirect.com/science/article/pii/S1053811920305516 [issue25]: https://github.com/nicrie/xmca/issues/25 [ruleN]: https://doi.org/10.1175/1520-0493(1982)110<0001:ASTFPC>2.0.CO;2 %prep %autosetup -n xmca-1.4.2.post2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-xmca -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 1.4.2.post2-1 - Package Spec generated