%global _empty_manifest_terminate_build 0
Name: python-chainer-mask-rcnn
Version: 0.5.24
Release: 1
Summary: Chainer Implementation of Mask R-CNN.
License: MIT
URL: http://github.com/wkentaro/chainer-mask-rcnn
Source0: https://mirrors.aliyun.com/pypi/web/packages/60/f7/a49f7625cc190657118eaab1f34d79db1bde42c8bd7d06c38737b649e21c/chainer-mask-rcnn-0.5.24.tar.gz
BuildArch: noarch
%description
# chainer-mask-rcnn
[](https://badge.fury.io/py/chainer-mask-rcnn)
[](https://pypi.org/project/chainer-mask-rcnn)
[](https://github.com/wkentaro/chainer-mask-rcnn/actions)
Chainer Implementation of [Mask R-CNN](https://arxiv.org/abs/1703.06870).
## Features
- [x] ResNet50, ResNet101 backbone.
- [x] [VOC and COCO training examples](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/examples).
- [x] **[Reproduced result of original work (ResNet50, COCO)](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/#coco-results)**.
- [x] Weight copy from pretrained model at [facebookresearch/Detectron](https://github.com/facebookresearch/Detectron).
- [x] Training with batch size >= 2.
- [ ] Support FPN backbones.
- [ ] Keypoint detection.
*Fig 1. Mask R-CNN, ResNet50, 8GPU, Ours, COCO 31.4 mAP@50:95*
## COCO Results
| Model | Implementation | N gpu training | mAP@50:95 | Log |
|-------|----------------|----------------|-----------|-----|
| Mask R-CNN, ResNet50 | [Ours](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/.?raw=true) | 8 | 31.5 - 31.8 | [Log](https://drive.google.com/open?id=1WOEtVnxqYdHl35pAyIcp-H0HtTjI-l3V) |
| Mask R-CNN, ResNet50 | [Detectron](https://github.com/facebookresearch/Detectron) | 8 | 31.4 (30.8 after copied) | [Log](https://drive.google.com/open?id=1xQBox3uMv2FoyXXpsC9ASNZ-92NgAbcT) |
| FCIS, ResNet50 | [FCIS](https://github.com/msracver/FCIS) | 8 | 27.1 | - |
## Inference
```bash
# you can use your trained model
./demo.py logs/ --img
# COCO Example: Mask R-CNN, ResNet50, 31.4 mAP@50:95
cd examples/coco
LOG_DIR=logs/20180730_081433
mkdir -p $LOG_DIR
pip install gdown
gdown https://drive.google.com/uc?id=1XC-Mx4HX0YBIy0Fbp59EjJFOF7a3XK0R -O $LOG_DIR/snapshot_model.npz
gdown https://drive.google.com/uc?id=1fXHanL2pBakbkv83wn69QhI6nM6KjrzL -O $LOG_DIR/params.yaml
./demo.py $LOG_DIR
# copy weight from caffe2 to chainer
cd examples/coco
./convert_caffe2_to_chainer.py # or download from https://drive.google.com/open?id=1WOEtVnxqYdHl35pAyIcp-H0HtTjI-l3V
./demo.py logs/R-50-C4_x1_caffe2_to_chainer --img https://raw.githubusercontent.com/facebookresearch/Detectron/master/demo/33823288584_1d21cf0a26_k.jpg
./demo.py logs/R-50-C4_x1_caffe2_to_chainer --img https://raw.githubusercontent.com/facebookresearch/Detectron/master/demo/17790319373_bd19b24cfc_k.jpg
```
*Fig 2. Mask R-CNN, ResNet50, 8GPU, Copied from Detectron, COCO 31.4 mAP@50:95*
## Installation & Training
### Single GPU Training
```bash
# Install Chainer Mask R-CNN.
pip install opencv-python
pip install .
# Run training!
cd examples/coco && ./train.py --gpu 0
```
### Multi GPU Training
```bash
# Install OpenMPI
wget https://www.open-mpi.org/software/ompi/v3.0/downloads/openmpi-3.0.0.tar.gz
tar zxvf openmpi-3.0.0.tar.gz
cd openmpi-3.0.0
./configure --with-cuda
make -j4
sudo make install
sudo ldconfig
# Install NCCL
# dpkg -i nccl-repo-ubuntu1404-2.1.4-ga-cuda8.0_1-1_amd64.deb
dpkg -i nccl-repo-ubuntu1604-2.1.15-ga-cuda9.1_1-1_amd64.deb
sudo apt update
sudo apt install libnccl2 libnccl-dev
# Install ChainerMN
pip install chainermn
# Finally, install Chainer Mask R-CNN.
pip install opencv-python
pip install .
# Run training!
cd examples/coco && mpirun -n 4 ./train.py --multi-node
```
## Testing
```bash
pip install flake8 pytest
flake8 .
pytest -v tests
```
%package -n python3-chainer-mask-rcnn
Summary: Chainer Implementation of Mask R-CNN.
Provides: python-chainer-mask-rcnn
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-chainer-mask-rcnn
# chainer-mask-rcnn
[](https://badge.fury.io/py/chainer-mask-rcnn)
[](https://pypi.org/project/chainer-mask-rcnn)
[](https://github.com/wkentaro/chainer-mask-rcnn/actions)
Chainer Implementation of [Mask R-CNN](https://arxiv.org/abs/1703.06870).
## Features
- [x] ResNet50, ResNet101 backbone.
- [x] [VOC and COCO training examples](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/examples).
- [x] **[Reproduced result of original work (ResNet50, COCO)](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/#coco-results)**.
- [x] Weight copy from pretrained model at [facebookresearch/Detectron](https://github.com/facebookresearch/Detectron).
- [x] Training with batch size >= 2.
- [ ] Support FPN backbones.
- [ ] Keypoint detection.
*Fig 1. Mask R-CNN, ResNet50, 8GPU, Ours, COCO 31.4 mAP@50:95*
## COCO Results
| Model | Implementation | N gpu training | mAP@50:95 | Log |
|-------|----------------|----------------|-----------|-----|
| Mask R-CNN, ResNet50 | [Ours](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/.?raw=true) | 8 | 31.5 - 31.8 | [Log](https://drive.google.com/open?id=1WOEtVnxqYdHl35pAyIcp-H0HtTjI-l3V) |
| Mask R-CNN, ResNet50 | [Detectron](https://github.com/facebookresearch/Detectron) | 8 | 31.4 (30.8 after copied) | [Log](https://drive.google.com/open?id=1xQBox3uMv2FoyXXpsC9ASNZ-92NgAbcT) |
| FCIS, ResNet50 | [FCIS](https://github.com/msracver/FCIS) | 8 | 27.1 | - |
## Inference
```bash
# you can use your trained model
./demo.py logs/ --img
# COCO Example: Mask R-CNN, ResNet50, 31.4 mAP@50:95
cd examples/coco
LOG_DIR=logs/20180730_081433
mkdir -p $LOG_DIR
pip install gdown
gdown https://drive.google.com/uc?id=1XC-Mx4HX0YBIy0Fbp59EjJFOF7a3XK0R -O $LOG_DIR/snapshot_model.npz
gdown https://drive.google.com/uc?id=1fXHanL2pBakbkv83wn69QhI6nM6KjrzL -O $LOG_DIR/params.yaml
./demo.py $LOG_DIR
# copy weight from caffe2 to chainer
cd examples/coco
./convert_caffe2_to_chainer.py # or download from https://drive.google.com/open?id=1WOEtVnxqYdHl35pAyIcp-H0HtTjI-l3V
./demo.py logs/R-50-C4_x1_caffe2_to_chainer --img https://raw.githubusercontent.com/facebookresearch/Detectron/master/demo/33823288584_1d21cf0a26_k.jpg
./demo.py logs/R-50-C4_x1_caffe2_to_chainer --img https://raw.githubusercontent.com/facebookresearch/Detectron/master/demo/17790319373_bd19b24cfc_k.jpg
```
*Fig 2. Mask R-CNN, ResNet50, 8GPU, Copied from Detectron, COCO 31.4 mAP@50:95*
## Installation & Training
### Single GPU Training
```bash
# Install Chainer Mask R-CNN.
pip install opencv-python
pip install .
# Run training!
cd examples/coco && ./train.py --gpu 0
```
### Multi GPU Training
```bash
# Install OpenMPI
wget https://www.open-mpi.org/software/ompi/v3.0/downloads/openmpi-3.0.0.tar.gz
tar zxvf openmpi-3.0.0.tar.gz
cd openmpi-3.0.0
./configure --with-cuda
make -j4
sudo make install
sudo ldconfig
# Install NCCL
# dpkg -i nccl-repo-ubuntu1404-2.1.4-ga-cuda8.0_1-1_amd64.deb
dpkg -i nccl-repo-ubuntu1604-2.1.15-ga-cuda9.1_1-1_amd64.deb
sudo apt update
sudo apt install libnccl2 libnccl-dev
# Install ChainerMN
pip install chainermn
# Finally, install Chainer Mask R-CNN.
pip install opencv-python
pip install .
# Run training!
cd examples/coco && mpirun -n 4 ./train.py --multi-node
```
## Testing
```bash
pip install flake8 pytest
flake8 .
pytest -v tests
```
%package help
Summary: Development documents and examples for chainer-mask-rcnn
Provides: python3-chainer-mask-rcnn-doc
%description help
# chainer-mask-rcnn
[](https://badge.fury.io/py/chainer-mask-rcnn)
[](https://pypi.org/project/chainer-mask-rcnn)
[](https://github.com/wkentaro/chainer-mask-rcnn/actions)
Chainer Implementation of [Mask R-CNN](https://arxiv.org/abs/1703.06870).
## Features
- [x] ResNet50, ResNet101 backbone.
- [x] [VOC and COCO training examples](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/examples).
- [x] **[Reproduced result of original work (ResNet50, COCO)](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/#coco-results)**.
- [x] Weight copy from pretrained model at [facebookresearch/Detectron](https://github.com/facebookresearch/Detectron).
- [x] Training with batch size >= 2.
- [ ] Support FPN backbones.
- [ ] Keypoint detection.
*Fig 1. Mask R-CNN, ResNet50, 8GPU, Ours, COCO 31.4 mAP@50:95*
## COCO Results
| Model | Implementation | N gpu training | mAP@50:95 | Log |
|-------|----------------|----------------|-----------|-----|
| Mask R-CNN, ResNet50 | [Ours](https://github.com/wkentaro/chainer-mask-rcnn/blob/main/.?raw=true) | 8 | 31.5 - 31.8 | [Log](https://drive.google.com/open?id=1WOEtVnxqYdHl35pAyIcp-H0HtTjI-l3V) |
| Mask R-CNN, ResNet50 | [Detectron](https://github.com/facebookresearch/Detectron) | 8 | 31.4 (30.8 after copied) | [Log](https://drive.google.com/open?id=1xQBox3uMv2FoyXXpsC9ASNZ-92NgAbcT) |
| FCIS, ResNet50 | [FCIS](https://github.com/msracver/FCIS) | 8 | 27.1 | - |
## Inference
```bash
# you can use your trained model
./demo.py logs/ --img
# COCO Example: Mask R-CNN, ResNet50, 31.4 mAP@50:95
cd examples/coco
LOG_DIR=logs/20180730_081433
mkdir -p $LOG_DIR
pip install gdown
gdown https://drive.google.com/uc?id=1XC-Mx4HX0YBIy0Fbp59EjJFOF7a3XK0R -O $LOG_DIR/snapshot_model.npz
gdown https://drive.google.com/uc?id=1fXHanL2pBakbkv83wn69QhI6nM6KjrzL -O $LOG_DIR/params.yaml
./demo.py $LOG_DIR
# copy weight from caffe2 to chainer
cd examples/coco
./convert_caffe2_to_chainer.py # or download from https://drive.google.com/open?id=1WOEtVnxqYdHl35pAyIcp-H0HtTjI-l3V
./demo.py logs/R-50-C4_x1_caffe2_to_chainer --img https://raw.githubusercontent.com/facebookresearch/Detectron/master/demo/33823288584_1d21cf0a26_k.jpg
./demo.py logs/R-50-C4_x1_caffe2_to_chainer --img https://raw.githubusercontent.com/facebookresearch/Detectron/master/demo/17790319373_bd19b24cfc_k.jpg
```
*Fig 2. Mask R-CNN, ResNet50, 8GPU, Copied from Detectron, COCO 31.4 mAP@50:95*
## Installation & Training
### Single GPU Training
```bash
# Install Chainer Mask R-CNN.
pip install opencv-python
pip install .
# Run training!
cd examples/coco && ./train.py --gpu 0
```
### Multi GPU Training
```bash
# Install OpenMPI
wget https://www.open-mpi.org/software/ompi/v3.0/downloads/openmpi-3.0.0.tar.gz
tar zxvf openmpi-3.0.0.tar.gz
cd openmpi-3.0.0
./configure --with-cuda
make -j4
sudo make install
sudo ldconfig
# Install NCCL
# dpkg -i nccl-repo-ubuntu1404-2.1.4-ga-cuda8.0_1-1_amd64.deb
dpkg -i nccl-repo-ubuntu1604-2.1.15-ga-cuda9.1_1-1_amd64.deb
sudo apt update
sudo apt install libnccl2 libnccl-dev
# Install ChainerMN
pip install chainermn
# Finally, install Chainer Mask R-CNN.
pip install opencv-python
pip install .
# Run training!
cd examples/coco && mpirun -n 4 ./train.py --multi-node
```
## Testing
```bash
pip install flake8 pytest
flake8 .
pytest -v tests
```
%prep
%autosetup -n chainer-mask-rcnn-0.5.24
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-chainer-mask-rcnn -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot - 0.5.24-1
- Package Spec generated