%global _empty_manifest_terminate_build 0 Name: python-pandas-ply Version: 0.2.1 Release: 1 Summary: functional data manipulation for pandas License: Apache License 2.0 URL: https://github.com/coursera/pandas-ply Source0: https://mirrors.aliyun.com/pypi/web/packages/8d/6b/434ef2f9c96e10ba6f75a1f82a85cf46ac98199f581627c9e732504a62f3/pandas-ply-0.2.1.tar.gz BuildArch: noarch %description **pandas-ply** is a thin layer which makes it easier to manipulate data with `pandas `_. In particular, it provides elegant, functional, chainable syntax in cases where **pandas** would require mutation, saved intermediate values, or other awkward constructions. In this way, it aims to move **pandas** closer to the "grammar of data manipulation" provided by the `dplyr `_ package for R. For example, take the **dplyr** code below: flights %>% group_by(year, month, day) %>% summarise( arr = mean(arr_delay, na.rm = TRUE), dep = mean(dep_delay, na.rm = TRUE) ) %>% filter(arr > 30 & dep > 30) The most common way to express this in **pandas** is probably: grouped_flights = flights.groupby(['year', 'month', 'day']) output = pd.DataFrame() output['arr'] = grouped_flights.arr_delay.mean() output['dep'] = grouped_flights.dep_delay.mean() filtered_output = output[(output.arr > 30) & (output.dep > 30)] **pandas-ply** lets you instead write: (flights .groupby(['year', 'month', 'day']) .ply_select( arr = X.arr_delay.mean(), dep = X.dep_delay.mean()) .ply_where(X.arr > 30, X.dep > 30)) In our opinion, this **pandas-ply** code is cleaner, more expressive, more readable, more concise, and less error-prone than the original **pandas** code. Explanatory notes on the **pandas-ply** code sample above: * **pandas-ply**'s methods (like ``ply_select`` and ``ply_where`` above) are attached directly to **pandas** objects and can be used immediately, without any wrapping or redirection. They start with a ``ply_`` prefix to distinguish them from built-in **pandas** methods. * **pandas-ply**'s methods are named for (and modelled after) SQL's operators. (But keep in mind that these operators will not always appear in the same order as they do in a SQL statement: ``SELECT a FROM b WHERE c GROUP BY d`` probably maps to ``b.ply_where(c).groupby(d).ply_select(a)``.) * **pandas-ply** includes a simple system for building "symbolic expressions" to provide as arguments to its methods. ``X`` above is an instance of ``ply.symbolic.Symbol``. Operations on this symbol produce larger compound symbolic expressions. When ``pandas-ply`` receives a symbolic expression as an argument, it converts it into a function. So, for instance, ``X.arr > 30`` in the above code could have instead been provided as ``lambda x: x.arr > 30``. Use of symbolic expressions allows the ``lambda x:`` to be left off, resulting in less cluttered code. %package -n python3-pandas-ply Summary: functional data manipulation for pandas Provides: python-pandas-ply BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pandas-ply **pandas-ply** is a thin layer which makes it easier to manipulate data with `pandas `_. In particular, it provides elegant, functional, chainable syntax in cases where **pandas** would require mutation, saved intermediate values, or other awkward constructions. In this way, it aims to move **pandas** closer to the "grammar of data manipulation" provided by the `dplyr `_ package for R. For example, take the **dplyr** code below: flights %>% group_by(year, month, day) %>% summarise( arr = mean(arr_delay, na.rm = TRUE), dep = mean(dep_delay, na.rm = TRUE) ) %>% filter(arr > 30 & dep > 30) The most common way to express this in **pandas** is probably: grouped_flights = flights.groupby(['year', 'month', 'day']) output = pd.DataFrame() output['arr'] = grouped_flights.arr_delay.mean() output['dep'] = grouped_flights.dep_delay.mean() filtered_output = output[(output.arr > 30) & (output.dep > 30)] **pandas-ply** lets you instead write: (flights .groupby(['year', 'month', 'day']) .ply_select( arr = X.arr_delay.mean(), dep = X.dep_delay.mean()) .ply_where(X.arr > 30, X.dep > 30)) In our opinion, this **pandas-ply** code is cleaner, more expressive, more readable, more concise, and less error-prone than the original **pandas** code. Explanatory notes on the **pandas-ply** code sample above: * **pandas-ply**'s methods (like ``ply_select`` and ``ply_where`` above) are attached directly to **pandas** objects and can be used immediately, without any wrapping or redirection. They start with a ``ply_`` prefix to distinguish them from built-in **pandas** methods. * **pandas-ply**'s methods are named for (and modelled after) SQL's operators. (But keep in mind that these operators will not always appear in the same order as they do in a SQL statement: ``SELECT a FROM b WHERE c GROUP BY d`` probably maps to ``b.ply_where(c).groupby(d).ply_select(a)``.) * **pandas-ply** includes a simple system for building "symbolic expressions" to provide as arguments to its methods. ``X`` above is an instance of ``ply.symbolic.Symbol``. Operations on this symbol produce larger compound symbolic expressions. When ``pandas-ply`` receives a symbolic expression as an argument, it converts it into a function. So, for instance, ``X.arr > 30`` in the above code could have instead been provided as ``lambda x: x.arr > 30``. Use of symbolic expressions allows the ``lambda x:`` to be left off, resulting in less cluttered code. %package help Summary: Development documents and examples for pandas-ply Provides: python3-pandas-ply-doc %description help **pandas-ply** is a thin layer which makes it easier to manipulate data with `pandas `_. In particular, it provides elegant, functional, chainable syntax in cases where **pandas** would require mutation, saved intermediate values, or other awkward constructions. In this way, it aims to move **pandas** closer to the "grammar of data manipulation" provided by the `dplyr `_ package for R. For example, take the **dplyr** code below: flights %>% group_by(year, month, day) %>% summarise( arr = mean(arr_delay, na.rm = TRUE), dep = mean(dep_delay, na.rm = TRUE) ) %>% filter(arr > 30 & dep > 30) The most common way to express this in **pandas** is probably: grouped_flights = flights.groupby(['year', 'month', 'day']) output = pd.DataFrame() output['arr'] = grouped_flights.arr_delay.mean() output['dep'] = grouped_flights.dep_delay.mean() filtered_output = output[(output.arr > 30) & (output.dep > 30)] **pandas-ply** lets you instead write: (flights .groupby(['year', 'month', 'day']) .ply_select( arr = X.arr_delay.mean(), dep = X.dep_delay.mean()) .ply_where(X.arr > 30, X.dep > 30)) In our opinion, this **pandas-ply** code is cleaner, more expressive, more readable, more concise, and less error-prone than the original **pandas** code. Explanatory notes on the **pandas-ply** code sample above: * **pandas-ply**'s methods (like ``ply_select`` and ``ply_where`` above) are attached directly to **pandas** objects and can be used immediately, without any wrapping or redirection. They start with a ``ply_`` prefix to distinguish them from built-in **pandas** methods. * **pandas-ply**'s methods are named for (and modelled after) SQL's operators. (But keep in mind that these operators will not always appear in the same order as they do in a SQL statement: ``SELECT a FROM b WHERE c GROUP BY d`` probably maps to ``b.ply_where(c).groupby(d).ply_select(a)``.) * **pandas-ply** includes a simple system for building "symbolic expressions" to provide as arguments to its methods. ``X`` above is an instance of ``ply.symbolic.Symbol``. Operations on this symbol produce larger compound symbolic expressions. When ``pandas-ply`` receives a symbolic expression as an argument, it converts it into a function. So, for instance, ``X.arr > 30`` in the above code could have instead been provided as ``lambda x: x.arr > 30``. Use of symbolic expressions allows the ``lambda x:`` to be left off, resulting in less cluttered code. %prep %autosetup -n pandas-ply-0.2.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pandas-ply -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 0.2.1-1 - Package Spec generated