summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-05 15:18:26 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-05 15:18:26 +0000
commit8342dbd9a5a01d59c230e60709605231dfb06819 (patch)
tree2114f105562af908e74cc03c3b8a0124869dcbe2
parent0c638bbb53fd2c1a92c0f66ec574d8807a699a82 (diff)
automatic import of python-alphatwirlopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-alphatwirl.spec126
-rw-r--r--sources1
3 files changed, 128 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..ad44ed8 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/alphatwirl-0.30.0.tar.gz
diff --git a/python-alphatwirl.spec b/python-alphatwirl.spec
new file mode 100644
index 0000000..f22f02e
--- /dev/null
+++ b/python-alphatwirl.spec
@@ -0,0 +1,126 @@
+%global _empty_manifest_terminate_build 0
+Name: python-alphatwirl
+Version: 0.30.0
+Release: 1
+Summary: A Python library for summarizing event data
+License: BSD License
+URL: https://github.com/alphatwirl/alphatwirl
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/af/ab/f12aeb7b1047d5edfca937668bb178f329c9f20bd5ce1b1b8015a716e224/alphatwirl-0.30.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-atpbar
+Requires: python3-mantichora
+
+%description
+A Python library for summarizing event data into multivariate categorical data
+### Description
+_AlphaTwirl_ is a Python library that summarizes event data into multivariate categorical data as data frames. Event data, input to AlphaTwirl, are data with one entry (or row) for one event: for example, data in [ROOT](https://root.cern.ch/) [TTrees](https://root.cern.ch/doc/master/classTTree.html) with one entry per collision event of an [LHC](https://home.cern/topics/large-hadron-collider) experiment at [CERN](http://home.cern/). Event data are often large&mdash;too large to be loaded in memory&mdash;because they have as many entries as events. Multivariate categorical data, the output of AlphaTwirl, have one row for one category. They are usually small&mdash;small enough to be loaded in memory&mdash;because they only have as many rows as categories. Users can, for example, import them as data frames into [R](https://www.r-project.org/) and [pandas](http://pandas.pydata.org/), which usually load all data in memory, and can perform categorical data analyses with a rich set of data operations available in R and pandas.
+****
+### Quick start
+- Jupyter Notebook: [*Quick start of AlphaTwirl*](https://github.com/alphatwirl/notebook-tutorial-2019-02)<br />
+&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/alphatwirl/notebook-tutorial-2019-02/master?filepath=tutorial_01.ipynb)
+****
+### Publication
+- Tai Sakuma, *"AlphaTwirl: A Python library for summarizing event data into multivariate categorical data"*,
+ EPJ Web of Conferences **214**, 02001 (2019), [doi:10.1051/epjconf/201921402001](https://doi.org/10.1051/epjconf/201921402001),
+ [1905.06609](https://arxiv.org/abs/1905.06609)
+****
+### License
+- AlphaTwirl is licensed under the BSD license.
+*****
+### Contact
+- Tai Sakuma - tai.sakuma@gmail.com
+
+%package -n python3-alphatwirl
+Summary: A Python library for summarizing event data
+Provides: python-alphatwirl
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-alphatwirl
+A Python library for summarizing event data into multivariate categorical data
+### Description
+_AlphaTwirl_ is a Python library that summarizes event data into multivariate categorical data as data frames. Event data, input to AlphaTwirl, are data with one entry (or row) for one event: for example, data in [ROOT](https://root.cern.ch/) [TTrees](https://root.cern.ch/doc/master/classTTree.html) with one entry per collision event of an [LHC](https://home.cern/topics/large-hadron-collider) experiment at [CERN](http://home.cern/). Event data are often large&mdash;too large to be loaded in memory&mdash;because they have as many entries as events. Multivariate categorical data, the output of AlphaTwirl, have one row for one category. They are usually small&mdash;small enough to be loaded in memory&mdash;because they only have as many rows as categories. Users can, for example, import them as data frames into [R](https://www.r-project.org/) and [pandas](http://pandas.pydata.org/), which usually load all data in memory, and can perform categorical data analyses with a rich set of data operations available in R and pandas.
+****
+### Quick start
+- Jupyter Notebook: [*Quick start of AlphaTwirl*](https://github.com/alphatwirl/notebook-tutorial-2019-02)<br />
+&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/alphatwirl/notebook-tutorial-2019-02/master?filepath=tutorial_01.ipynb)
+****
+### Publication
+- Tai Sakuma, *"AlphaTwirl: A Python library for summarizing event data into multivariate categorical data"*,
+ EPJ Web of Conferences **214**, 02001 (2019), [doi:10.1051/epjconf/201921402001](https://doi.org/10.1051/epjconf/201921402001),
+ [1905.06609](https://arxiv.org/abs/1905.06609)
+****
+### License
+- AlphaTwirl is licensed under the BSD license.
+*****
+### Contact
+- Tai Sakuma - tai.sakuma@gmail.com
+
+%package help
+Summary: Development documents and examples for alphatwirl
+Provides: python3-alphatwirl-doc
+%description help
+A Python library for summarizing event data into multivariate categorical data
+### Description
+_AlphaTwirl_ is a Python library that summarizes event data into multivariate categorical data as data frames. Event data, input to AlphaTwirl, are data with one entry (or row) for one event: for example, data in [ROOT](https://root.cern.ch/) [TTrees](https://root.cern.ch/doc/master/classTTree.html) with one entry per collision event of an [LHC](https://home.cern/topics/large-hadron-collider) experiment at [CERN](http://home.cern/). Event data are often large&mdash;too large to be loaded in memory&mdash;because they have as many entries as events. Multivariate categorical data, the output of AlphaTwirl, have one row for one category. They are usually small&mdash;small enough to be loaded in memory&mdash;because they only have as many rows as categories. Users can, for example, import them as data frames into [R](https://www.r-project.org/) and [pandas](http://pandas.pydata.org/), which usually load all data in memory, and can perform categorical data analyses with a rich set of data operations available in R and pandas.
+****
+### Quick start
+- Jupyter Notebook: [*Quick start of AlphaTwirl*](https://github.com/alphatwirl/notebook-tutorial-2019-02)<br />
+&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/alphatwirl/notebook-tutorial-2019-02/master?filepath=tutorial_01.ipynb)
+****
+### Publication
+- Tai Sakuma, *"AlphaTwirl: A Python library for summarizing event data into multivariate categorical data"*,
+ EPJ Web of Conferences **214**, 02001 (2019), [doi:10.1051/epjconf/201921402001](https://doi.org/10.1051/epjconf/201921402001),
+ [1905.06609](https://arxiv.org/abs/1905.06609)
+****
+### License
+- AlphaTwirl is licensed under the BSD license.
+*****
+### Contact
+- Tai Sakuma - tai.sakuma@gmail.com
+
+%prep
+%autosetup -n alphatwirl-0.30.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-alphatwirl -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.30.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..a7001ee
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+100a1430ee00aa194c21baf74c59a2e1 alphatwirl-0.30.0.tar.gz