diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-18 06:58:25 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-18 06:58:25 +0000 |
commit | 89fc2f7b140d507520b86b11c8bbca1f87d542fd (patch) | |
tree | 43ecce53c26e9c711f17733e12caa7259df6beba | |
parent | e089e615588716ad4c1c45b094092101a6f7b51d (diff) |
automatic import of python-auto-face-recognition
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-auto-face-recognition.spec | 496 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 498 insertions, 0 deletions
@@ -0,0 +1 @@ +/auto_face_recognition-0.0.3.tar.gz diff --git a/python-auto-face-recognition.spec b/python-auto-face-recognition.spec new file mode 100644 index 0000000..0418361 --- /dev/null +++ b/python-auto-face-recognition.spec @@ -0,0 +1,496 @@ +%global _empty_manifest_terminate_build 0 +Name: python-auto-face-recognition +Version: 0.0.3 +Release: 1 +Summary: auto_face_recognition is Tensorflow based python library for fast face recognition +License: MIT License +URL: https://github.com/Dipeshpal/auto_face_recognition +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ce/80/b2bfb193f9adc38f8b60995d2c23f4746a72c2f46e33e153c31a37e5680a/auto_face_recognition-0.0.3.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-opencv-contrib-python +Requires: python3-tensorflow +Requires: python3-matplotlib + +%description + +# [auto_face_recognition](https://github.com/Dipeshpal/auto_face_recognition) + +***Last Upadted: 19 November, 2020*** + +1. What is auto_face_recognition? + 2. Prerequisite + 3. Getting Started- How to use it? + 4. Future? + +## 1. What is auto_face_recognition? +It is a python library for the Face Recognition. This library make face recognition easy and simple. This library uses Tensorflow 2.0+ for the face recognition and model training. + +## 2. Prerequisite- + +* To use it only Python (> 3.6) is required. +* Recommended Python < 3.9 + +## 3. Getting Started (How to use it)- + + ### Install the latest version- + `pip install auto_face_recognition` + +It will install all the required package automatically, including Tensorflow Latest. + + +### Usage and Features- + +After installing the library you can import the module- + +1. **Object Creation-** + ``` + import auto_face_recognition + obj = auto_face_recognition.AutoFaceRecognition() + ``` +2. **Dataset Creation-** + + + obj.datasetcreate(haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml') + + ***Note:*** You need to pass the '[haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml)' and '[haarcascade_eye.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_eye.xml)' path. + +3. **Model Training-** + + obj.face_recognition_train() + +4. **Predict Faces-** + + # Real Time + obj.predict_faces() + # Single Face Recofnition + obj.predict_face() + +**Parameters You Can Choose-** + +datasetcreate + + datasetcreate(dataset_path='datasets', class_name='Demo', + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False, + save_face_only=True, no_of_samples=100, + width=128, height=128, color_mode=False) + """" + Dataset Create by face detection + :param dataset_path: str (example: 'folder_of_dataset') + :param class_name: str (example: 'folder_of_dataset') + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml):param eye_detect: bool (example:True) + :param save_face_only: bool (example:True) + :param no_of_samples: int (example: 100) + :param width: int (example: 128) + :param height: int (example: 128) + :param color_mode: bool (example:False):return: None + """ +face_recognition_train + + face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False): + """ + Train TF Keras model according to dataset path + :param data_dir: str (example: 'folder_of_dataset') + :param batch_size: int (example:32) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param epochs: int (example:10) + :param model_path: str (example: 'model') + :param pretrained: str (example: None, 'VGG16', 'ResNet50' or 'InceptionV3') + :param base_model_trainable: bool (example: False (Enable if you want to train the pretrained model's layer)) + :return: None + """ + + predict_faces + + predict_faces(self, class_name=None, img_height=128, img_width=128, + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', + color_mode=False): + """ + Predict Face + :param class_name: Type-List (example: ['class1', 'class2'] ) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml) + :param model_path: str (example: 'model') + :param color_mode: bool (example: False) + :return: None + """ + +predict_face + + + predict_face(self, class_name=None, img_height=128, img_width=128, + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', + color_mode=False, image_path='tmp.png'): + """ + Predict Face + :param class_name: Type-List (example: ['class1', 'class2'] ) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml) + :param model_path: str (example: 'model') + :param color_mode: bool (example: False) + :param image_path: str (example: 'src/image_predict.png' + :return: None + """ + +## 4. Future? + + Finetuning with Resnet and others. + You Suggest. + +### Like my work? + +Start the project and subscribe me on [YouTube](https://www.youtube.com/dipeshpal17). +https://www.youtube.com/dipeshpal17 + + + + +%package -n python3-auto-face-recognition +Summary: auto_face_recognition is Tensorflow based python library for fast face recognition +Provides: python-auto-face-recognition +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-auto-face-recognition + +# [auto_face_recognition](https://github.com/Dipeshpal/auto_face_recognition) + +***Last Upadted: 19 November, 2020*** + +1. What is auto_face_recognition? + 2. Prerequisite + 3. Getting Started- How to use it? + 4. Future? + +## 1. What is auto_face_recognition? +It is a python library for the Face Recognition. This library make face recognition easy and simple. This library uses Tensorflow 2.0+ for the face recognition and model training. + +## 2. Prerequisite- + +* To use it only Python (> 3.6) is required. +* Recommended Python < 3.9 + +## 3. Getting Started (How to use it)- + + ### Install the latest version- + `pip install auto_face_recognition` + +It will install all the required package automatically, including Tensorflow Latest. + + +### Usage and Features- + +After installing the library you can import the module- + +1. **Object Creation-** + ``` + import auto_face_recognition + obj = auto_face_recognition.AutoFaceRecognition() + ``` +2. **Dataset Creation-** + + + obj.datasetcreate(haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml') + + ***Note:*** You need to pass the '[haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml)' and '[haarcascade_eye.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_eye.xml)' path. + +3. **Model Training-** + + obj.face_recognition_train() + +4. **Predict Faces-** + + # Real Time + obj.predict_faces() + # Single Face Recofnition + obj.predict_face() + +**Parameters You Can Choose-** + +datasetcreate + + datasetcreate(dataset_path='datasets', class_name='Demo', + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False, + save_face_only=True, no_of_samples=100, + width=128, height=128, color_mode=False) + """" + Dataset Create by face detection + :param dataset_path: str (example: 'folder_of_dataset') + :param class_name: str (example: 'folder_of_dataset') + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml):param eye_detect: bool (example:True) + :param save_face_only: bool (example:True) + :param no_of_samples: int (example: 100) + :param width: int (example: 128) + :param height: int (example: 128) + :param color_mode: bool (example:False):return: None + """ +face_recognition_train + + face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False): + """ + Train TF Keras model according to dataset path + :param data_dir: str (example: 'folder_of_dataset') + :param batch_size: int (example:32) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param epochs: int (example:10) + :param model_path: str (example: 'model') + :param pretrained: str (example: None, 'VGG16', 'ResNet50' or 'InceptionV3') + :param base_model_trainable: bool (example: False (Enable if you want to train the pretrained model's layer)) + :return: None + """ + + predict_faces + + predict_faces(self, class_name=None, img_height=128, img_width=128, + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', + color_mode=False): + """ + Predict Face + :param class_name: Type-List (example: ['class1', 'class2'] ) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml) + :param model_path: str (example: 'model') + :param color_mode: bool (example: False) + :return: None + """ + +predict_face + + + predict_face(self, class_name=None, img_height=128, img_width=128, + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', + color_mode=False, image_path='tmp.png'): + """ + Predict Face + :param class_name: Type-List (example: ['class1', 'class2'] ) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml) + :param model_path: str (example: 'model') + :param color_mode: bool (example: False) + :param image_path: str (example: 'src/image_predict.png' + :return: None + """ + +## 4. Future? + + Finetuning with Resnet and others. + You Suggest. + +### Like my work? + +Start the project and subscribe me on [YouTube](https://www.youtube.com/dipeshpal17). +https://www.youtube.com/dipeshpal17 + + + + +%package help +Summary: Development documents and examples for auto-face-recognition +Provides: python3-auto-face-recognition-doc +%description help + +# [auto_face_recognition](https://github.com/Dipeshpal/auto_face_recognition) + +***Last Upadted: 19 November, 2020*** + +1. What is auto_face_recognition? + 2. Prerequisite + 3. Getting Started- How to use it? + 4. Future? + +## 1. What is auto_face_recognition? +It is a python library for the Face Recognition. This library make face recognition easy and simple. This library uses Tensorflow 2.0+ for the face recognition and model training. + +## 2. Prerequisite- + +* To use it only Python (> 3.6) is required. +* Recommended Python < 3.9 + +## 3. Getting Started (How to use it)- + + ### Install the latest version- + `pip install auto_face_recognition` + +It will install all the required package automatically, including Tensorflow Latest. + + +### Usage and Features- + +After installing the library you can import the module- + +1. **Object Creation-** + ``` + import auto_face_recognition + obj = auto_face_recognition.AutoFaceRecognition() + ``` +2. **Dataset Creation-** + + + obj.datasetcreate(haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml') + + ***Note:*** You need to pass the '[haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml)' and '[haarcascade_eye.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_eye.xml)' path. + +3. **Model Training-** + + obj.face_recognition_train() + +4. **Predict Faces-** + + # Real Time + obj.predict_faces() + # Single Face Recofnition + obj.predict_face() + +**Parameters You Can Choose-** + +datasetcreate + + datasetcreate(dataset_path='datasets', class_name='Demo', + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False, + save_face_only=True, no_of_samples=100, + width=128, height=128, color_mode=False) + """" + Dataset Create by face detection + :param dataset_path: str (example: 'folder_of_dataset') + :param class_name: str (example: 'folder_of_dataset') + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml):param eye_detect: bool (example:True) + :param save_face_only: bool (example:True) + :param no_of_samples: int (example: 100) + :param width: int (example: 128) + :param height: int (example: 128) + :param color_mode: bool (example:False):return: None + """ +face_recognition_train + + face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False): + """ + Train TF Keras model according to dataset path + :param data_dir: str (example: 'folder_of_dataset') + :param batch_size: int (example:32) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param epochs: int (example:10) + :param model_path: str (example: 'model') + :param pretrained: str (example: None, 'VGG16', 'ResNet50' or 'InceptionV3') + :param base_model_trainable: bool (example: False (Enable if you want to train the pretrained model's layer)) + :return: None + """ + + predict_faces + + predict_faces(self, class_name=None, img_height=128, img_width=128, + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', + color_mode=False): + """ + Predict Face + :param class_name: Type-List (example: ['class1', 'class2'] ) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml) + :param model_path: str (example: 'model') + :param color_mode: bool (example: False) + :return: None + """ + +predict_face + + + predict_face(self, class_name=None, img_height=128, img_width=128, + haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', + eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', + color_mode=False, image_path='tmp.png'): + """ + Predict Face + :param class_name: Type-List (example: ['class1', 'class2'] ) + :param img_height: int (example:128) + :param img_width: int (example:128) + :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) + :param eyecascade_path: str (example: 'haarcascade_eye.xml) + :param model_path: str (example: 'model') + :param color_mode: bool (example: False) + :param image_path: str (example: 'src/image_predict.png' + :return: None + """ + +## 4. Future? + + Finetuning with Resnet and others. + You Suggest. + +### Like my work? + +Start the project and subscribe me on [YouTube](https://www.youtube.com/dipeshpal17). +https://www.youtube.com/dipeshpal17 + + + + +%prep +%autosetup -n auto-face-recognition-0.0.3 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-auto-face-recognition -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.3-1 +- Package Spec generated @@ -0,0 +1 @@ +c9459a7fe4f0d4848d65a6bb870eb401 auto_face_recognition-0.0.3.tar.gz |