diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-11 20:57:07 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-11 20:57:07 +0000 |
commit | 93db4f68a5b3a2d95b00b8eece7f0e0386e4f4ea (patch) | |
tree | 5f46dd79bdb216d475ec3077808bfd8cb3b330ac | |
parent | 677547a64e1831520dd2077893ef4cae45777c60 (diff) |
automatic import of python-composeml
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-composeml.spec | 799 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 801 insertions, 0 deletions
@@ -0,0 +1 @@ +/composeml-0.10.1.tar.gz diff --git a/python-composeml.spec b/python-composeml.spec new file mode 100644 index 0000000..133139e --- /dev/null +++ b/python-composeml.spec @@ -0,0 +1,799 @@ +%global _empty_manifest_terminate_build 0 +Name: python-composeml +Version: 0.10.1 +Release: 1 +Summary: a framework for automated prediction engineering +License: BSD 3-clause +URL: https://pypi.org/project/composeml/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/98/d7/70264fb178f79f6c7b1981cf6780dc0a2feb4ed76bdea771882b38b971f7/composeml-0.10.1.tar.gz +BuildArch: noarch + +Requires: python3-pandas +Requires: python3-tqdm +Requires: python3-matplotlib +Requires: python3-seaborn +Requires: python3-composeml[updater] +Requires: python3-codecov +Requires: python3-flake8 +Requires: python3-isort +Requires: python3-black +Requires: python3-nbsphinx +Requires: python3-pydata-sphinx-theme +Requires: python3-Sphinx +Requires: python3-sphinx-inline-tabs +Requires: python3-sphinx-copybutton +Requires: python3-myst-parser +Requires: python3-nbconvert +Requires: python3-ipython +Requires: python3-pygments +Requires: python3-jupyter +Requires: python3-pandoc +Requires: python3-ipykernel +Requires: python3-scikit-learn +Requires: python3-evalml +Requires: python3-pip +Requires: python3-pytest-cov +Requires: python3-pytest-xdist +Requires: python3-wheel +Requires: python3-featuretools +Requires: python3-woodwork +Requires: python3-pyarrow +Requires: python3-alteryx-open-src-update-checker + +%description +<p align="center"><img width=50% src="https://raw.githubusercontent.com/alteryx/compose/main/docs/source/images/compose.png" alt="Compose" /></p> +<p align="center"><i>"Build better training examples in a fraction of the time."</i></p> +<p align="center"> + <a href="https://github.com/alteryx/compose/actions?query=workflow%3ATests" target="_blank"> + <img src="https://github.com/alteryx/compose/workflows/Tests/badge.svg" alt="Tests" /> + </a> + <a href="https://codecov.io/gh/alteryx/compose"> + <img src="https://codecov.io/gh/alteryx/compose/branch/main/graph/badge.svg?token=mDz4ueTUEO"/> + </a> + <a href="https://compose.alteryx.com/en/stable/?badge=stable" target="_blank"> + <img src="https://readthedocs.com/projects/feature-labs-inc-compose/badge/?version=stable&token=5c3ace685cdb6e10eb67828a4dc74d09b20bb842980c8ee9eb4e9ed168d05b00" + alt="ReadTheDocs" /> + </a> + <a href="https://badge.fury.io/py/composeml" target="_blank"> + <img src="https://badge.fury.io/py/composeml.svg?maxAge=2592000" alt="PyPI Version" /> + </a> + <a href="https://stackoverflow.com/questions/tagged/compose-ml" target="_blank"> + <img src="https://img.shields.io/badge/questions-on_stackoverflow-blue.svg?" alt="StackOverflow" /> + </a> + <a href="https://pepy.tech/project/composeml" target="_blank"> + <img src="https://pepy.tech/badge/composeml/month" alt="PyPI Downloads" /> + </a> +</p> +<hr> + +[Compose](https://compose.alteryx.com) is a machine learning tool for automated prediction engineering. It allows you to structure prediction problems and generate labels for supervised learning. An end user defines an outcome of interest by writing a *labeling function*, then runs a search to automatically extract training examples from historical data. Its result is then provided to [Featuretools](https://docs.featuretools.com/) for automated feature engineering and subsequently to [EvalML](https://evalml.alteryx.com/) for automated machine learning. The workflow of an applied machine learning engineer then becomes: + +<br><p align="center"><img width=90% src="https://raw.githubusercontent.com/alteryx/compose/main/docs/source/images/workflow.png" alt="Compose" /></p><br> + +By automating the early stage of the machine learning pipeline, our end user can easily define a task and solve it. See the [documentation](https://compose.alteryx.com) for more information. + +## Installation +Install with pip + +``` +python -m pip install composeml +``` + +or from the Conda-forge channel on [conda](https://anaconda.org/conda-forge/composeml): + +``` +conda install -c conda-forge composeml +``` + +### Add-ons + +**Update checker** - Receive automatic notifications of new Compose releases + +``` +python -m pip install "composeml[update_checker]" +``` + +## Example +> Will a customer spend more than 300 in the next hour of transactions? + +In this example, we automatically generate new training examples from a historical dataset of transactions. + +```python +import composeml as cp +df = cp.demos.load_transactions() +df = df[df.columns[:7]] +df.head() +``` + +<table border="0" class="dataframe"> + <thead> + <tr style="text-align: right;"> + <th>transaction_id</th> + <th>session_id</th> + <th>transaction_time</th> + <th>product_id</th> + <th>amount</th> + <th>customer_id</th> + <th>device</th> + </tr> + </thead> + <tbody> + <tr> + <td>298</td> + <td>1</td> + <td>2014-01-01 00:00:00</td> + <td>5</td> + <td>127.64</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>10</td> + <td>1</td> + <td>2014-01-01 00:09:45</td> + <td>5</td> + <td>57.39</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>495</td> + <td>1</td> + <td>2014-01-01 00:14:05</td> + <td>5</td> + <td>69.45</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>460</td> + <td>10</td> + <td>2014-01-01 02:33:50</td> + <td>5</td> + <td>123.19</td> + <td>2</td> + <td>tablet</td> + </tr> + <tr> + <td>302</td> + <td>10</td> + <td>2014-01-01 02:37:05</td> + <td>5</td> + <td>64.47</td> + <td>2</td> + <td>tablet</td> + </tr> + </tbody> +</table> + +First, we represent the prediction problem with a labeling function and a label maker. + +```python +def total_spent(ds): + return ds['amount'].sum() + +label_maker = cp.LabelMaker( + target_dataframe_index="customer_id", + time_index="transaction_time", + labeling_function=total_spent, + window_size="1h", +) +``` + +Then, we run a search to automatically generate the training examples. + +```python +label_times = label_maker.search( + df.sort_values('transaction_time'), + num_examples_per_instance=2, + minimum_data='2014-01-01', + drop_empty=False, + verbose=False, +) + +label_times = label_times.threshold(300) +label_times.head() +``` + +<table border="0" class="dataframe"> + <thead> + <tr style="text-align: right;"> + <th>customer_id</th> + <th>time</th> + <th>total_spent</th> + </tr> + </thead> + <tbody> + <tr> + <td>1</td> + <td>2014-01-01 00:00:00</td> + <td>True</td> + </tr> + <tr> + <td>1</td> + <td>2014-01-01 01:00:00</td> + <td>True</td> + </tr> + <tr> + <td>2</td> + <td>2014-01-01 00:00:00</td> + <td>False</td> + </tr> + <tr> + <td>2</td> + <td>2014-01-01 01:00:00</td> + <td>False</td> + </tr> + <tr> + <td>3</td> + <td>2014-01-01 00:00:00</td> + <td>False</td> + </tr> + </tbody> +</table> + +We now have labels that are ready to use in [Featuretools](https://docs.featuretools.com/) to generate features. + +## Support + +The Innovation Labs open source community is happy to provide support to users of Compose. Project support can be found in three places depending on the type of question: + +1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/compose-ml) with the `composeml` tag. +2. For bugs, issues, or feature requests start a Github [issue](https://github.com/alteryx/compose/issues/new). +3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA). +4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com + +## Citing Compose +Compose is built upon a newly defined part of the machine learning process — prediction engineering. If you use Compose, please consider citing this paper: +James Max Kanter, Gillespie, Owen, Kalyan Veeramachaneni. [Label, Segment,Featurize: a cross domain framework for prediction engineering.](https://dai.lids.mit.edu/wp-content/uploads/2017/10/Pred_eng1.pdf) IEEE DSAA 2016. + +BibTeX entry: + +```bibtex +@inproceedings{kanter2016label, + title={Label, segment, featurize: a cross domain framework for prediction engineering}, + author={Kanter, James Max and Gillespie, Owen and Veeramachaneni, Kalyan}, + booktitle={2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)}, + pages={430--439}, + year={2016}, + organization={IEEE} +} +``` + +## Acknowledgements + +The open source development has been supported in part by DARPA's Data driven discovery of models program (D3M). + +## Alteryx + +**Compose** is an open source project maintained by [Alteryx](https://www.alteryx.com). We developed Compose to enable flexible definition of the machine learning task. To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch. + +<p align="center"> + <a href="https://www.alteryx.com/open-source"> + <img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/> + </a> +</p> + + +%package -n python3-composeml +Summary: a framework for automated prediction engineering +Provides: python-composeml +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-composeml +<p align="center"><img width=50% src="https://raw.githubusercontent.com/alteryx/compose/main/docs/source/images/compose.png" alt="Compose" /></p> +<p align="center"><i>"Build better training examples in a fraction of the time."</i></p> +<p align="center"> + <a href="https://github.com/alteryx/compose/actions?query=workflow%3ATests" target="_blank"> + <img src="https://github.com/alteryx/compose/workflows/Tests/badge.svg" alt="Tests" /> + </a> + <a href="https://codecov.io/gh/alteryx/compose"> + <img src="https://codecov.io/gh/alteryx/compose/branch/main/graph/badge.svg?token=mDz4ueTUEO"/> + </a> + <a href="https://compose.alteryx.com/en/stable/?badge=stable" target="_blank"> + <img src="https://readthedocs.com/projects/feature-labs-inc-compose/badge/?version=stable&token=5c3ace685cdb6e10eb67828a4dc74d09b20bb842980c8ee9eb4e9ed168d05b00" + alt="ReadTheDocs" /> + </a> + <a href="https://badge.fury.io/py/composeml" target="_blank"> + <img src="https://badge.fury.io/py/composeml.svg?maxAge=2592000" alt="PyPI Version" /> + </a> + <a href="https://stackoverflow.com/questions/tagged/compose-ml" target="_blank"> + <img src="https://img.shields.io/badge/questions-on_stackoverflow-blue.svg?" alt="StackOverflow" /> + </a> + <a href="https://pepy.tech/project/composeml" target="_blank"> + <img src="https://pepy.tech/badge/composeml/month" alt="PyPI Downloads" /> + </a> +</p> +<hr> + +[Compose](https://compose.alteryx.com) is a machine learning tool for automated prediction engineering. It allows you to structure prediction problems and generate labels for supervised learning. An end user defines an outcome of interest by writing a *labeling function*, then runs a search to automatically extract training examples from historical data. Its result is then provided to [Featuretools](https://docs.featuretools.com/) for automated feature engineering and subsequently to [EvalML](https://evalml.alteryx.com/) for automated machine learning. The workflow of an applied machine learning engineer then becomes: + +<br><p align="center"><img width=90% src="https://raw.githubusercontent.com/alteryx/compose/main/docs/source/images/workflow.png" alt="Compose" /></p><br> + +By automating the early stage of the machine learning pipeline, our end user can easily define a task and solve it. See the [documentation](https://compose.alteryx.com) for more information. + +## Installation +Install with pip + +``` +python -m pip install composeml +``` + +or from the Conda-forge channel on [conda](https://anaconda.org/conda-forge/composeml): + +``` +conda install -c conda-forge composeml +``` + +### Add-ons + +**Update checker** - Receive automatic notifications of new Compose releases + +``` +python -m pip install "composeml[update_checker]" +``` + +## Example +> Will a customer spend more than 300 in the next hour of transactions? + +In this example, we automatically generate new training examples from a historical dataset of transactions. + +```python +import composeml as cp +df = cp.demos.load_transactions() +df = df[df.columns[:7]] +df.head() +``` + +<table border="0" class="dataframe"> + <thead> + <tr style="text-align: right;"> + <th>transaction_id</th> + <th>session_id</th> + <th>transaction_time</th> + <th>product_id</th> + <th>amount</th> + <th>customer_id</th> + <th>device</th> + </tr> + </thead> + <tbody> + <tr> + <td>298</td> + <td>1</td> + <td>2014-01-01 00:00:00</td> + <td>5</td> + <td>127.64</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>10</td> + <td>1</td> + <td>2014-01-01 00:09:45</td> + <td>5</td> + <td>57.39</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>495</td> + <td>1</td> + <td>2014-01-01 00:14:05</td> + <td>5</td> + <td>69.45</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>460</td> + <td>10</td> + <td>2014-01-01 02:33:50</td> + <td>5</td> + <td>123.19</td> + <td>2</td> + <td>tablet</td> + </tr> + <tr> + <td>302</td> + <td>10</td> + <td>2014-01-01 02:37:05</td> + <td>5</td> + <td>64.47</td> + <td>2</td> + <td>tablet</td> + </tr> + </tbody> +</table> + +First, we represent the prediction problem with a labeling function and a label maker. + +```python +def total_spent(ds): + return ds['amount'].sum() + +label_maker = cp.LabelMaker( + target_dataframe_index="customer_id", + time_index="transaction_time", + labeling_function=total_spent, + window_size="1h", +) +``` + +Then, we run a search to automatically generate the training examples. + +```python +label_times = label_maker.search( + df.sort_values('transaction_time'), + num_examples_per_instance=2, + minimum_data='2014-01-01', + drop_empty=False, + verbose=False, +) + +label_times = label_times.threshold(300) +label_times.head() +``` + +<table border="0" class="dataframe"> + <thead> + <tr style="text-align: right;"> + <th>customer_id</th> + <th>time</th> + <th>total_spent</th> + </tr> + </thead> + <tbody> + <tr> + <td>1</td> + <td>2014-01-01 00:00:00</td> + <td>True</td> + </tr> + <tr> + <td>1</td> + <td>2014-01-01 01:00:00</td> + <td>True</td> + </tr> + <tr> + <td>2</td> + <td>2014-01-01 00:00:00</td> + <td>False</td> + </tr> + <tr> + <td>2</td> + <td>2014-01-01 01:00:00</td> + <td>False</td> + </tr> + <tr> + <td>3</td> + <td>2014-01-01 00:00:00</td> + <td>False</td> + </tr> + </tbody> +</table> + +We now have labels that are ready to use in [Featuretools](https://docs.featuretools.com/) to generate features. + +## Support + +The Innovation Labs open source community is happy to provide support to users of Compose. Project support can be found in three places depending on the type of question: + +1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/compose-ml) with the `composeml` tag. +2. For bugs, issues, or feature requests start a Github [issue](https://github.com/alteryx/compose/issues/new). +3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA). +4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com + +## Citing Compose +Compose is built upon a newly defined part of the machine learning process — prediction engineering. If you use Compose, please consider citing this paper: +James Max Kanter, Gillespie, Owen, Kalyan Veeramachaneni. [Label, Segment,Featurize: a cross domain framework for prediction engineering.](https://dai.lids.mit.edu/wp-content/uploads/2017/10/Pred_eng1.pdf) IEEE DSAA 2016. + +BibTeX entry: + +```bibtex +@inproceedings{kanter2016label, + title={Label, segment, featurize: a cross domain framework for prediction engineering}, + author={Kanter, James Max and Gillespie, Owen and Veeramachaneni, Kalyan}, + booktitle={2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)}, + pages={430--439}, + year={2016}, + organization={IEEE} +} +``` + +## Acknowledgements + +The open source development has been supported in part by DARPA's Data driven discovery of models program (D3M). + +## Alteryx + +**Compose** is an open source project maintained by [Alteryx](https://www.alteryx.com). We developed Compose to enable flexible definition of the machine learning task. To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch. + +<p align="center"> + <a href="https://www.alteryx.com/open-source"> + <img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/> + </a> +</p> + + +%package help +Summary: Development documents and examples for composeml +Provides: python3-composeml-doc +%description help +<p align="center"><img width=50% src="https://raw.githubusercontent.com/alteryx/compose/main/docs/source/images/compose.png" alt="Compose" /></p> +<p align="center"><i>"Build better training examples in a fraction of the time."</i></p> +<p align="center"> + <a href="https://github.com/alteryx/compose/actions?query=workflow%3ATests" target="_blank"> + <img src="https://github.com/alteryx/compose/workflows/Tests/badge.svg" alt="Tests" /> + </a> + <a href="https://codecov.io/gh/alteryx/compose"> + <img src="https://codecov.io/gh/alteryx/compose/branch/main/graph/badge.svg?token=mDz4ueTUEO"/> + </a> + <a href="https://compose.alteryx.com/en/stable/?badge=stable" target="_blank"> + <img src="https://readthedocs.com/projects/feature-labs-inc-compose/badge/?version=stable&token=5c3ace685cdb6e10eb67828a4dc74d09b20bb842980c8ee9eb4e9ed168d05b00" + alt="ReadTheDocs" /> + </a> + <a href="https://badge.fury.io/py/composeml" target="_blank"> + <img src="https://badge.fury.io/py/composeml.svg?maxAge=2592000" alt="PyPI Version" /> + </a> + <a href="https://stackoverflow.com/questions/tagged/compose-ml" target="_blank"> + <img src="https://img.shields.io/badge/questions-on_stackoverflow-blue.svg?" alt="StackOverflow" /> + </a> + <a href="https://pepy.tech/project/composeml" target="_blank"> + <img src="https://pepy.tech/badge/composeml/month" alt="PyPI Downloads" /> + </a> +</p> +<hr> + +[Compose](https://compose.alteryx.com) is a machine learning tool for automated prediction engineering. It allows you to structure prediction problems and generate labels for supervised learning. An end user defines an outcome of interest by writing a *labeling function*, then runs a search to automatically extract training examples from historical data. Its result is then provided to [Featuretools](https://docs.featuretools.com/) for automated feature engineering and subsequently to [EvalML](https://evalml.alteryx.com/) for automated machine learning. The workflow of an applied machine learning engineer then becomes: + +<br><p align="center"><img width=90% src="https://raw.githubusercontent.com/alteryx/compose/main/docs/source/images/workflow.png" alt="Compose" /></p><br> + +By automating the early stage of the machine learning pipeline, our end user can easily define a task and solve it. See the [documentation](https://compose.alteryx.com) for more information. + +## Installation +Install with pip + +``` +python -m pip install composeml +``` + +or from the Conda-forge channel on [conda](https://anaconda.org/conda-forge/composeml): + +``` +conda install -c conda-forge composeml +``` + +### Add-ons + +**Update checker** - Receive automatic notifications of new Compose releases + +``` +python -m pip install "composeml[update_checker]" +``` + +## Example +> Will a customer spend more than 300 in the next hour of transactions? + +In this example, we automatically generate new training examples from a historical dataset of transactions. + +```python +import composeml as cp +df = cp.demos.load_transactions() +df = df[df.columns[:7]] +df.head() +``` + +<table border="0" class="dataframe"> + <thead> + <tr style="text-align: right;"> + <th>transaction_id</th> + <th>session_id</th> + <th>transaction_time</th> + <th>product_id</th> + <th>amount</th> + <th>customer_id</th> + <th>device</th> + </tr> + </thead> + <tbody> + <tr> + <td>298</td> + <td>1</td> + <td>2014-01-01 00:00:00</td> + <td>5</td> + <td>127.64</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>10</td> + <td>1</td> + <td>2014-01-01 00:09:45</td> + <td>5</td> + <td>57.39</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>495</td> + <td>1</td> + <td>2014-01-01 00:14:05</td> + <td>5</td> + <td>69.45</td> + <td>2</td> + <td>desktop</td> + </tr> + <tr> + <td>460</td> + <td>10</td> + <td>2014-01-01 02:33:50</td> + <td>5</td> + <td>123.19</td> + <td>2</td> + <td>tablet</td> + </tr> + <tr> + <td>302</td> + <td>10</td> + <td>2014-01-01 02:37:05</td> + <td>5</td> + <td>64.47</td> + <td>2</td> + <td>tablet</td> + </tr> + </tbody> +</table> + +First, we represent the prediction problem with a labeling function and a label maker. + +```python +def total_spent(ds): + return ds['amount'].sum() + +label_maker = cp.LabelMaker( + target_dataframe_index="customer_id", + time_index="transaction_time", + labeling_function=total_spent, + window_size="1h", +) +``` + +Then, we run a search to automatically generate the training examples. + +```python +label_times = label_maker.search( + df.sort_values('transaction_time'), + num_examples_per_instance=2, + minimum_data='2014-01-01', + drop_empty=False, + verbose=False, +) + +label_times = label_times.threshold(300) +label_times.head() +``` + +<table border="0" class="dataframe"> + <thead> + <tr style="text-align: right;"> + <th>customer_id</th> + <th>time</th> + <th>total_spent</th> + </tr> + </thead> + <tbody> + <tr> + <td>1</td> + <td>2014-01-01 00:00:00</td> + <td>True</td> + </tr> + <tr> + <td>1</td> + <td>2014-01-01 01:00:00</td> + <td>True</td> + </tr> + <tr> + <td>2</td> + <td>2014-01-01 00:00:00</td> + <td>False</td> + </tr> + <tr> + <td>2</td> + <td>2014-01-01 01:00:00</td> + <td>False</td> + </tr> + <tr> + <td>3</td> + <td>2014-01-01 00:00:00</td> + <td>False</td> + </tr> + </tbody> +</table> + +We now have labels that are ready to use in [Featuretools](https://docs.featuretools.com/) to generate features. + +## Support + +The Innovation Labs open source community is happy to provide support to users of Compose. Project support can be found in three places depending on the type of question: + +1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/compose-ml) with the `composeml` tag. +2. For bugs, issues, or feature requests start a Github [issue](https://github.com/alteryx/compose/issues/new). +3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA). +4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com + +## Citing Compose +Compose is built upon a newly defined part of the machine learning process — prediction engineering. If you use Compose, please consider citing this paper: +James Max Kanter, Gillespie, Owen, Kalyan Veeramachaneni. [Label, Segment,Featurize: a cross domain framework for prediction engineering.](https://dai.lids.mit.edu/wp-content/uploads/2017/10/Pred_eng1.pdf) IEEE DSAA 2016. + +BibTeX entry: + +```bibtex +@inproceedings{kanter2016label, + title={Label, segment, featurize: a cross domain framework for prediction engineering}, + author={Kanter, James Max and Gillespie, Owen and Veeramachaneni, Kalyan}, + booktitle={2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)}, + pages={430--439}, + year={2016}, + organization={IEEE} +} +``` + +## Acknowledgements + +The open source development has been supported in part by DARPA's Data driven discovery of models program (D3M). + +## Alteryx + +**Compose** is an open source project maintained by [Alteryx](https://www.alteryx.com). We developed Compose to enable flexible definition of the machine learning task. To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch. + +<p align="center"> + <a href="https://www.alteryx.com/open-source"> + <img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/> + </a> +</p> + + +%prep +%autosetup -n composeml-0.10.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-composeml -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.10.1-1 +- Package Spec generated @@ -0,0 +1 @@ +acb86c6efe955e5a43dcfed52a5d6278 composeml-0.10.1.tar.gz |