summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-29 11:37:58 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-29 11:37:58 +0000
commit4faae40e9df00e16e877a8da3c7953b50e11a13f (patch)
tree87727190f865cb7687965cf9c7fbfbe31cf40acd
parent7bb2f31d223181beecfe30b9ed89f23e87acea5c (diff)
automatic import of python-dataiter
-rw-r--r--.gitignore1
-rw-r--r--python-dataiter.spec192
-rw-r--r--sources1
3 files changed, 194 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..68a299a 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/dataiter-0.41.tar.gz
diff --git a/python-dataiter.spec b/python-dataiter.spec
new file mode 100644
index 0000000..cd4d25d
--- /dev/null
+++ b/python-dataiter.spec
@@ -0,0 +1,192 @@
+%global _empty_manifest_terminate_build 0
+Name: python-dataiter
+Version: 0.41
+Release: 1
+Summary: Classes for data manipulation
+License: MIT
+URL: https://github.com/otsaloma/dataiter
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/78/0f/7650e94f0fe9f15234613511aec441af79908320e79bb1c55147c2855054/dataiter-0.41.tar.gz
+BuildArch: noarch
+
+Requires: python3-attd
+Requires: python3-numpy
+Requires: python3-pandas
+
+%description
+[![Test](https://github.com/otsaloma/dataiter/workflows/Test/badge.svg)](https://github.com/otsaloma/dataiter/actions)
+[![Documentation Status](https://readthedocs.org/projects/dataiter/badge/?version=latest)](https://dataiter.readthedocs.io/en/latest/?badge=latest)
+[![PyPI](https://img.shields.io/pypi/v/dataiter.svg)](https://pypi.org/project/dataiter/)
+[![Downloads](https://pepy.tech/badge/dataiter/month)](https://pepy.tech/project/dataiter)
+Dataiter currently includes the following classes.
+**`DataFrame`** is a class for tabular data similar to R's `data.frame`
+or `pandas.DataFrame`. It is under the hood a dictionary of NumPy arrays
+and thus capable of fast vectorized operations. You can consider this to
+be a light-weight alternative to Pandas with a simple and consistent
+API. Performance-wise Dataiter relies on NumPy and Numba and is likely
+to be at best comparable to Pandas.
+**`ListOfDicts`** is a class useful for manipulating data from JSON
+APIs. It provides functionality similar to libraries such as
+Underscore.js, with manipulation functions that iterate over the data
+and return a shallow modified copy of the original. `attd.AttributeDict`
+is used to provide convenient access to dictionary keys.
+**`GeoJSON`** is a simple wrapper class that allows reading a GeoJSON
+file into a `DataFrame` and writing a data frame to a GeoJSON file. Any
+operations on the data are thus done with methods provided by the data
+frame class. Geometry is read as-is into the "geometry" column, but no
+special geometric operations are currently supported.
+## Installation
+```bash
+# Latest stable version
+pip install -U dataiter
+# Latest development version
+pip install -U git+https://github.com/otsaloma/dataiter
+# Numba (optional)
+pip install -U numba
+```
+Dataiter optionally uses **Numba** to speed up certain operations. If
+you have Numba installed and importing it succeeds, Dataiter will use it
+automatically. It's currently not a hard dependency, so you need to
+install it separately.
+## Documentation
+https://dataiter.readthedocs.io/
+If you're familiar with either dplyr (R) or Pandas (Python), the
+comparison table in the documentation will give you a quick overview of
+the differences and similarities.
+https://dataiter.readthedocs.io/en/latest/comparison.html
+
+%package -n python3-dataiter
+Summary: Classes for data manipulation
+Provides: python-dataiter
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-dataiter
+[![Test](https://github.com/otsaloma/dataiter/workflows/Test/badge.svg)](https://github.com/otsaloma/dataiter/actions)
+[![Documentation Status](https://readthedocs.org/projects/dataiter/badge/?version=latest)](https://dataiter.readthedocs.io/en/latest/?badge=latest)
+[![PyPI](https://img.shields.io/pypi/v/dataiter.svg)](https://pypi.org/project/dataiter/)
+[![Downloads](https://pepy.tech/badge/dataiter/month)](https://pepy.tech/project/dataiter)
+Dataiter currently includes the following classes.
+**`DataFrame`** is a class for tabular data similar to R's `data.frame`
+or `pandas.DataFrame`. It is under the hood a dictionary of NumPy arrays
+and thus capable of fast vectorized operations. You can consider this to
+be a light-weight alternative to Pandas with a simple and consistent
+API. Performance-wise Dataiter relies on NumPy and Numba and is likely
+to be at best comparable to Pandas.
+**`ListOfDicts`** is a class useful for manipulating data from JSON
+APIs. It provides functionality similar to libraries such as
+Underscore.js, with manipulation functions that iterate over the data
+and return a shallow modified copy of the original. `attd.AttributeDict`
+is used to provide convenient access to dictionary keys.
+**`GeoJSON`** is a simple wrapper class that allows reading a GeoJSON
+file into a `DataFrame` and writing a data frame to a GeoJSON file. Any
+operations on the data are thus done with methods provided by the data
+frame class. Geometry is read as-is into the "geometry" column, but no
+special geometric operations are currently supported.
+## Installation
+```bash
+# Latest stable version
+pip install -U dataiter
+# Latest development version
+pip install -U git+https://github.com/otsaloma/dataiter
+# Numba (optional)
+pip install -U numba
+```
+Dataiter optionally uses **Numba** to speed up certain operations. If
+you have Numba installed and importing it succeeds, Dataiter will use it
+automatically. It's currently not a hard dependency, so you need to
+install it separately.
+## Documentation
+https://dataiter.readthedocs.io/
+If you're familiar with either dplyr (R) or Pandas (Python), the
+comparison table in the documentation will give you a quick overview of
+the differences and similarities.
+https://dataiter.readthedocs.io/en/latest/comparison.html
+
+%package help
+Summary: Development documents and examples for dataiter
+Provides: python3-dataiter-doc
+%description help
+[![Test](https://github.com/otsaloma/dataiter/workflows/Test/badge.svg)](https://github.com/otsaloma/dataiter/actions)
+[![Documentation Status](https://readthedocs.org/projects/dataiter/badge/?version=latest)](https://dataiter.readthedocs.io/en/latest/?badge=latest)
+[![PyPI](https://img.shields.io/pypi/v/dataiter.svg)](https://pypi.org/project/dataiter/)
+[![Downloads](https://pepy.tech/badge/dataiter/month)](https://pepy.tech/project/dataiter)
+Dataiter currently includes the following classes.
+**`DataFrame`** is a class for tabular data similar to R's `data.frame`
+or `pandas.DataFrame`. It is under the hood a dictionary of NumPy arrays
+and thus capable of fast vectorized operations. You can consider this to
+be a light-weight alternative to Pandas with a simple and consistent
+API. Performance-wise Dataiter relies on NumPy and Numba and is likely
+to be at best comparable to Pandas.
+**`ListOfDicts`** is a class useful for manipulating data from JSON
+APIs. It provides functionality similar to libraries such as
+Underscore.js, with manipulation functions that iterate over the data
+and return a shallow modified copy of the original. `attd.AttributeDict`
+is used to provide convenient access to dictionary keys.
+**`GeoJSON`** is a simple wrapper class that allows reading a GeoJSON
+file into a `DataFrame` and writing a data frame to a GeoJSON file. Any
+operations on the data are thus done with methods provided by the data
+frame class. Geometry is read as-is into the "geometry" column, but no
+special geometric operations are currently supported.
+## Installation
+```bash
+# Latest stable version
+pip install -U dataiter
+# Latest development version
+pip install -U git+https://github.com/otsaloma/dataiter
+# Numba (optional)
+pip install -U numba
+```
+Dataiter optionally uses **Numba** to speed up certain operations. If
+you have Numba installed and importing it succeeds, Dataiter will use it
+automatically. It's currently not a hard dependency, so you need to
+install it separately.
+## Documentation
+https://dataiter.readthedocs.io/
+If you're familiar with either dplyr (R) or Pandas (Python), the
+comparison table in the documentation will give you a quick overview of
+the differences and similarities.
+https://dataiter.readthedocs.io/en/latest/comparison.html
+
+%prep
+%autosetup -n dataiter-0.41
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-dataiter -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.41-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..24138b2
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+8b420f866fb8dc05714a051c552027d7 dataiter-0.41.tar.gz