summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-11 02:51:05 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-11 02:51:05 +0000
commit253a932ccad735219311ccae3339c97973ef7afa (patch)
tree501a89ab9132b6b73a50cea352ce3fff21a04b25
parent6f85c587047a6fe8a1a19f51ff442c1053ce1b2b (diff)
automatic import of python-dowhy
-rw-r--r--.gitignore1
-rw-r--r--python-dowhy.spec107
-rw-r--r--sources1
3 files changed, 109 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..0d3d939 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/dowhy-0.9.1.tar.gz
diff --git a/python-dowhy.spec b/python-dowhy.spec
new file mode 100644
index 0000000..fee1539
--- /dev/null
+++ b/python-dowhy.spec
@@ -0,0 +1,107 @@
+%global _empty_manifest_terminate_build 0
+Name: python-dowhy
+Version: 0.9.1
+Release: 1
+Summary: DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions
+License: MIT
+URL: https://github.com/py-why/dowhy
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e5/89/caa4c274b6bf42724d55f3dc92042ea75c626dc83a9fda56c8ab880a9169/dowhy-0.9.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-cython
+Requires: python3-scipy
+Requires: python3-statsmodels
+Requires: python3-numpy
+Requires: python3-pandas
+Requires: python3-networkx
+Requires: python3-sympy
+Requires: python3-scikit-learn
+Requires: python3-pydot
+Requires: python3-joblib
+Requires: python3-pygraphviz
+Requires: python3-econml
+Requires: python3-tqdm
+Requires: python3-causal-learn
+Requires: python3-autogluon-tabular[all]
+Requires: python3-matplotlib
+Requires: python3-sphinx_design
+
+%description
+ Introducing DoWhy and the 4 steps of causal inference | `Microsoft Research Blog <https://www.microsoft.com/en-us/research/blog/dowhy-a-library-for-causal-inference/>`_ | `Video Tutorial <https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html>`_ | `Arxiv Paper <https://arxiv.org/abs/2011.04216>`_ | `Arxiv Paper (GCM-extension) <https://arxiv.org/abs/2206.06821>`_ | `Slides <https://www2.slideshare.net/AmitSharma315/dowhy-an-endtoend-library-for-causal-inference>`_
+ Read the `docs <https://py-why.github.io/dowhy/>`_ | Try it online! |Binder|_
+**Case Studies using DoWhy**: `Hotel booking cancellations <https://towardsdatascience.com/beyond-predictive-models-the-causal-story-behind-hotel-booking-cancellations-d29e8558cbaf>`_ | `Effect of customer loyalty programs <https://github.com/microsoft/dowhy/blob/main/docs/source/example_notebooks/dowhy_example_effect_of_memberrewards_program.ipynb>`_ | `Optimizing article headlines <https://medium.com/@akelleh/introducing-the-do-sampler-for-causal-inference-a3296ea9e78d>`_ | `Effect of home visits on infant health (IHDP) <https://towardsdatascience.com/implementing-causal-inference-a-key-step-towards-agi-de2cde8ea599>`_ | `Causes of customer churn/attrition <https://medium.com/geekculture/a-quickstart-for-causal-analysis-decision-making-with-dowhy-2ce2d4d1efa9>`_
+As computing systems are more frequently and more actively intervening in societally critical domains such as healthcare, education, and governance, it is critical to correctly predict and understand the causal effects of these interventions. Without an A/B test, conventional machine learning methods, built on pattern recognition and correlational analyses, are insufficient for decision-making.
+Much like machine learning libraries have done for prediction, **"DoWhy" is a Python library that aims to spark causal thinking and analysis**. DoWhy provides a principled four-step interface for causal inference that focuses on explicitly modeling causal assumptions and validating them as much as possible. The key feature of DoWhy is its state-of-the-art refutation API that can automatically test causal assumptions for any estimation method, thus making inference more robust and accessible to non-experts. DoWhy supports estimation of the average causal effect for backdoor, frontdoor, instrumental variable and other identification methods, and estimation of the conditional effect (CATE) through an integration with the EconML library.
+For a quick introduction to causal inference, check out `amit-sharma/causal-inference-tutorial <https://github.com/amit-sharma/causal-inference-tutorial/>`_. We also gave a more comprehensive tutorial at the ACM Knowledge Discovery and Data Mining (`KDD 2018 <http://www.kdd.org/kdd2018/>`_) conference: `causalinference.gitlab.io/kdd-tutorial <http://causalinference.gitlab.io/kdd-tutorial/>`_. For an introduction to the four steps of causal inference and its implications for machine learning, you can access this video tutorial from Microsoft Research: `DoWhy Webinar <https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html>`_.
+Documentation for DoWhy is available at `py-why.github.io/dowhy <https://py-why.github.io/dowhy/>`_.
+
+%package -n python3-dowhy
+Summary: DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions
+Provides: python-dowhy
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-dowhy
+ Introducing DoWhy and the 4 steps of causal inference | `Microsoft Research Blog <https://www.microsoft.com/en-us/research/blog/dowhy-a-library-for-causal-inference/>`_ | `Video Tutorial <https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html>`_ | `Arxiv Paper <https://arxiv.org/abs/2011.04216>`_ | `Arxiv Paper (GCM-extension) <https://arxiv.org/abs/2206.06821>`_ | `Slides <https://www2.slideshare.net/AmitSharma315/dowhy-an-endtoend-library-for-causal-inference>`_
+ Read the `docs <https://py-why.github.io/dowhy/>`_ | Try it online! |Binder|_
+**Case Studies using DoWhy**: `Hotel booking cancellations <https://towardsdatascience.com/beyond-predictive-models-the-causal-story-behind-hotel-booking-cancellations-d29e8558cbaf>`_ | `Effect of customer loyalty programs <https://github.com/microsoft/dowhy/blob/main/docs/source/example_notebooks/dowhy_example_effect_of_memberrewards_program.ipynb>`_ | `Optimizing article headlines <https://medium.com/@akelleh/introducing-the-do-sampler-for-causal-inference-a3296ea9e78d>`_ | `Effect of home visits on infant health (IHDP) <https://towardsdatascience.com/implementing-causal-inference-a-key-step-towards-agi-de2cde8ea599>`_ | `Causes of customer churn/attrition <https://medium.com/geekculture/a-quickstart-for-causal-analysis-decision-making-with-dowhy-2ce2d4d1efa9>`_
+As computing systems are more frequently and more actively intervening in societally critical domains such as healthcare, education, and governance, it is critical to correctly predict and understand the causal effects of these interventions. Without an A/B test, conventional machine learning methods, built on pattern recognition and correlational analyses, are insufficient for decision-making.
+Much like machine learning libraries have done for prediction, **"DoWhy" is a Python library that aims to spark causal thinking and analysis**. DoWhy provides a principled four-step interface for causal inference that focuses on explicitly modeling causal assumptions and validating them as much as possible. The key feature of DoWhy is its state-of-the-art refutation API that can automatically test causal assumptions for any estimation method, thus making inference more robust and accessible to non-experts. DoWhy supports estimation of the average causal effect for backdoor, frontdoor, instrumental variable and other identification methods, and estimation of the conditional effect (CATE) through an integration with the EconML library.
+For a quick introduction to causal inference, check out `amit-sharma/causal-inference-tutorial <https://github.com/amit-sharma/causal-inference-tutorial/>`_. We also gave a more comprehensive tutorial at the ACM Knowledge Discovery and Data Mining (`KDD 2018 <http://www.kdd.org/kdd2018/>`_) conference: `causalinference.gitlab.io/kdd-tutorial <http://causalinference.gitlab.io/kdd-tutorial/>`_. For an introduction to the four steps of causal inference and its implications for machine learning, you can access this video tutorial from Microsoft Research: `DoWhy Webinar <https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html>`_.
+Documentation for DoWhy is available at `py-why.github.io/dowhy <https://py-why.github.io/dowhy/>`_.
+
+%package help
+Summary: Development documents and examples for dowhy
+Provides: python3-dowhy-doc
+%description help
+ Introducing DoWhy and the 4 steps of causal inference | `Microsoft Research Blog <https://www.microsoft.com/en-us/research/blog/dowhy-a-library-for-causal-inference/>`_ | `Video Tutorial <https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html>`_ | `Arxiv Paper <https://arxiv.org/abs/2011.04216>`_ | `Arxiv Paper (GCM-extension) <https://arxiv.org/abs/2206.06821>`_ | `Slides <https://www2.slideshare.net/AmitSharma315/dowhy-an-endtoend-library-for-causal-inference>`_
+ Read the `docs <https://py-why.github.io/dowhy/>`_ | Try it online! |Binder|_
+**Case Studies using DoWhy**: `Hotel booking cancellations <https://towardsdatascience.com/beyond-predictive-models-the-causal-story-behind-hotel-booking-cancellations-d29e8558cbaf>`_ | `Effect of customer loyalty programs <https://github.com/microsoft/dowhy/blob/main/docs/source/example_notebooks/dowhy_example_effect_of_memberrewards_program.ipynb>`_ | `Optimizing article headlines <https://medium.com/@akelleh/introducing-the-do-sampler-for-causal-inference-a3296ea9e78d>`_ | `Effect of home visits on infant health (IHDP) <https://towardsdatascience.com/implementing-causal-inference-a-key-step-towards-agi-de2cde8ea599>`_ | `Causes of customer churn/attrition <https://medium.com/geekculture/a-quickstart-for-causal-analysis-decision-making-with-dowhy-2ce2d4d1efa9>`_
+As computing systems are more frequently and more actively intervening in societally critical domains such as healthcare, education, and governance, it is critical to correctly predict and understand the causal effects of these interventions. Without an A/B test, conventional machine learning methods, built on pattern recognition and correlational analyses, are insufficient for decision-making.
+Much like machine learning libraries have done for prediction, **"DoWhy" is a Python library that aims to spark causal thinking and analysis**. DoWhy provides a principled four-step interface for causal inference that focuses on explicitly modeling causal assumptions and validating them as much as possible. The key feature of DoWhy is its state-of-the-art refutation API that can automatically test causal assumptions for any estimation method, thus making inference more robust and accessible to non-experts. DoWhy supports estimation of the average causal effect for backdoor, frontdoor, instrumental variable and other identification methods, and estimation of the conditional effect (CATE) through an integration with the EconML library.
+For a quick introduction to causal inference, check out `amit-sharma/causal-inference-tutorial <https://github.com/amit-sharma/causal-inference-tutorial/>`_. We also gave a more comprehensive tutorial at the ACM Knowledge Discovery and Data Mining (`KDD 2018 <http://www.kdd.org/kdd2018/>`_) conference: `causalinference.gitlab.io/kdd-tutorial <http://causalinference.gitlab.io/kdd-tutorial/>`_. For an introduction to the four steps of causal inference and its implications for machine learning, you can access this video tutorial from Microsoft Research: `DoWhy Webinar <https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html>`_.
+Documentation for DoWhy is available at `py-why.github.io/dowhy <https://py-why.github.io/dowhy/>`_.
+
+%prep
+%autosetup -n dowhy-0.9.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-dowhy -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..dd327ce
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+8b1aa1303063a4d490a0885701116b22 dowhy-0.9.1.tar.gz