diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-17 03:43:26 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-17 03:43:26 +0000 |
commit | 95b9b64e477d09c21004eb241ceb43c2a4724c93 (patch) | |
tree | 5fce467591ac1940d4f0be010ee2f2ab54c8574f | |
parent | ff533f86c4e8323abb297f10c658bb5a9fdb746b (diff) |
automatic import of python-easylda
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-easylda.spec | 201 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 203 insertions, 0 deletions
@@ -0,0 +1 @@ +/easyLDA-0.2.8.6.tar.gz diff --git a/python-easylda.spec b/python-easylda.spec new file mode 100644 index 0000000..b1bd7d6 --- /dev/null +++ b/python-easylda.spec @@ -0,0 +1,201 @@ +%global _empty_manifest_terminate_build 0 +Name: python-easyLDA +Version: 0.2.8.6 +Release: 1 +Summary: easily bult LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT +License: MIT +URL: https://github.com/shichaoji/easyLDA +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/02/25/06d3ccf63f834d3b5a6f11e4a35271dbf332d842b43386cd82597593f9c3/easyLDA-0.2.8.6.tar.gz +BuildArch: noarch + +Requires: python3-nltk +Requires: python3-gensim +Requires: python3-pyLDAvis + +%description +|PyPI version| +easyLDA is a library that easily build LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +github: https://github.com/shichaoji/easyLDA +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +- If you have a collection of documents, and what to explore the + relationship & topics of the docs, easyLDA is a very handy library to + use. Simply run the commend and you'll get a trained LDA model with + results visualized +The library pipeline text preprocessing, such as tf-idf, n-grams from Gensim library +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Credit to: +https://radimrehurek.com/gensim/ +http://pyldavis.readthedocs.io/en/latest/readme.html +installation +~~~~~~~~~~~~ +``$ pip install easyLDA`` +usage example +~~~~~~~~~~~~~ +simple need a text file (.csv) with each row represents a document (a post, comment, short article etc.), with only one column which is the text +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +text file (csv) sample view +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +easy to use, just in a shell window, type: easyLDA, then specify the location of the text document +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +1. then choose how many topics you want the model to fit +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +2. choose the topic contains only single word (1) or can be phases (2/3) as well +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +the program will be starting to train +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +- in shell $ easyLDA +model result +~~~~~~~~~~~~ +models folder created by program contains the trained model +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +xx.html file is the interactive visulization of the model result +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +visualization live example +~~~~~~~~~~~~~~~~~~~~~~~~~~ +http://shichaoji.com/2016/02/04/easylda-live-example/ +static pic result +~~~~~~~~~~~~~~~~~~~~~~ + +%package -n python3-easyLDA +Summary: easily bult LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT +Provides: python-easyLDA +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-easyLDA +|PyPI version| +easyLDA is a library that easily build LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +github: https://github.com/shichaoji/easyLDA +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +- If you have a collection of documents, and what to explore the + relationship & topics of the docs, easyLDA is a very handy library to + use. Simply run the commend and you'll get a trained LDA model with + results visualized +The library pipeline text preprocessing, such as tf-idf, n-grams from Gensim library +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Credit to: +https://radimrehurek.com/gensim/ +http://pyldavis.readthedocs.io/en/latest/readme.html +installation +~~~~~~~~~~~~ +``$ pip install easyLDA`` +usage example +~~~~~~~~~~~~~ +simple need a text file (.csv) with each row represents a document (a post, comment, short article etc.), with only one column which is the text +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +text file (csv) sample view +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +easy to use, just in a shell window, type: easyLDA, then specify the location of the text document +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +1. then choose how many topics you want the model to fit +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +2. choose the topic contains only single word (1) or can be phases (2/3) as well +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +the program will be starting to train +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +- in shell $ easyLDA +model result +~~~~~~~~~~~~ +models folder created by program contains the trained model +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +xx.html file is the interactive visulization of the model result +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +visualization live example +~~~~~~~~~~~~~~~~~~~~~~~~~~ +http://shichaoji.com/2016/02/04/easylda-live-example/ +static pic result +~~~~~~~~~~~~~~~~~~~~~~ + +%package help +Summary: Development documents and examples for easyLDA +Provides: python3-easyLDA-doc +%description help +|PyPI version| +easyLDA is a library that easily build LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +github: https://github.com/shichaoji/easyLDA +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +- If you have a collection of documents, and what to explore the + relationship & topics of the docs, easyLDA is a very handy library to + use. Simply run the commend and you'll get a trained LDA model with + results visualized +The library pipeline text preprocessing, such as tf-idf, n-grams from Gensim library +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Credit to: +https://radimrehurek.com/gensim/ +http://pyldavis.readthedocs.io/en/latest/readme.html +installation +~~~~~~~~~~~~ +``$ pip install easyLDA`` +usage example +~~~~~~~~~~~~~ +simple need a text file (.csv) with each row represents a document (a post, comment, short article etc.), with only one column which is the text +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +text file (csv) sample view +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +easy to use, just in a shell window, type: easyLDA, then specify the location of the text document +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +1. then choose how many topics you want the model to fit +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +2. choose the topic contains only single word (1) or can be phases (2/3) as well +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +the program will be starting to train +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +- in shell $ easyLDA +model result +~~~~~~~~~~~~ +models folder created by program contains the trained model +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +xx.html file is the interactive visulization of the model result +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +visualization live example +~~~~~~~~~~~~~~~~~~~~~~~~~~ +http://shichaoji.com/2016/02/04/easylda-live-example/ +static pic result +~~~~~~~~~~~~~~~~~~~~~~ + +%prep +%autosetup -n easyLDA-0.2.8.6 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-easyLDA -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 17 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.8.6-1 +- Package Spec generated @@ -0,0 +1 @@ +cf5840cb4c48f164e5cd6bb2b311e791 easyLDA-0.2.8.6.tar.gz |