diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-31 03:30:00 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-31 03:30:00 +0000 |
commit | aa5cffa7e926d7fd2a557894e76c57c58d1d2225 (patch) | |
tree | 4d9099ef0b58fe81749b2afa305436ceda82e1ea | |
parent | f4ac4b696150fb7f53c9c2fb379a07ab4b251ba0 (diff) |
automatic import of python-etna-ts
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-etna-ts.spec | 436 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 438 insertions, 0 deletions
@@ -0,0 +1 @@ +/etna-ts-1.3.1.tar.gz diff --git a/python-etna-ts.spec b/python-etna-ts.spec new file mode 100644 index 0000000..5a84f25 --- /dev/null +++ b/python-etna-ts.spec @@ -0,0 +1,436 @@ +%global _empty_manifest_terminate_build 0 +Name: python-etna-ts +Version: 1.3.1 +Release: 1 +Summary: ETNA is the first python open source framework of Tinkoff.ru AI Center. It is designed to make working with time series simple, productive, and fun. +License: Apache 2.0 +URL: https://github.com/tinkoff-ai/etna-ts +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a7/be/b7e2e3cbc2e7dd0603c42aa4a1be3e4852313eef86abf2c1c4eb3d71c408/etna-ts-1.3.1.tar.gz +BuildArch: noarch + +Requires: python3-scikit-learn +Requires: python3-pandas +Requires: python3-catboost +Requires: python3-ruptures +Requires: python3-numba +Requires: python3-seaborn +Requires: python3-statsmodels +Requires: python3-dill +Requires: python3-toml +Requires: python3-loguru +Requires: python3-saxpy +Requires: python3-hydra-slayer +Requires: python3-typer +Requires: python3-prophet +Requires: python3-torch +Requires: python3-pytorch-forecasting +Requires: python3-wandb +Requires: python3-sphinx-mathjax-offline +Requires: python3-nbsphinx +Requires: python3-Sphinx +Requires: python3-numpydoc +Requires: python3-sphinx-rtd-theme +Requires: python3-myst-parser +Requires: python3-GitPython +Requires: python3-pytest +Requires: python3-coverage +Requires: python3-pytest-cov +Requires: python3-black +Requires: python3-isort +Requires: python3-flake8 +Requires: python3-pep8-naming +Requires: python3-flake8-docstrings +Requires: python3-mypy +Requires: python3-types-PyYAML +Requires: python3-click +Requires: python3-semver +Requires: python3-ipywidgets +Requires: python3-jupyter +Requires: python3-nbconvert +Requires: python3-omegaconf + +%description +# ETNA Time Series Library + +[](https://pypi.org/project/etna-ts/) +[](https://pepy.tech/project/etna-ts) +[](https://codecov.io/gh/tinkoff-ai/etna-ts) + +[](https://t.me/etna_support) + +[Homepage](https://etna.tinkoff.ru) | +[Documentation](https://etna-docs.netlify.app/) | +[Tutorials](https://github.com/tinkoff-ai/etna-ts/tree/master/examples) | +[Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md) | +[Release Notes](https://github.com/tinkoff-ai/etna-ts/releases) + +ETNA is an easy-to-use time series forecasting framework. +It includes built in toolkits for time series preprocessing, feature generation, +a variety of predictive models with unified interface - from classic machine learning +to SOTA neural networks, models combination methods and smart backtesting. +ETNA is designed to make working with time series simple, productive, and fun. + +ETNA is the first python open source framework of +[Tinkoff.ru](https://www.tinkoff.ru/eng/) +Artificial Intelligence Center. +The library started as an internal product in our company - +we use it in over 10+ projects now, so we often release updates. +Contributions are welcome - check our [Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md). + + + +## Installation + +ETNA is on [PyPI](https://pypi.org/project/etna-ts), so you can use `pip` to install it. + +```bash +pip install --upgrade pip +pip install etna-ts +``` + + +## Get started +Here's some example code for a quick start. +```python +import pandas as pd +from etna.datasets.tsdataset import TSDataset +from etna.models import ProphetModel + +# Read the data +df = pd.read_csv("examples/data/example_dataset.csv") + +# Create a TSDataset +df = TSDataset.to_dataset(df) +ts = TSDataset(df, freq="D") + +# Choose a horizon +HORIZON = 8 + +# Fit the model +model = ProphetModel() +model.fit(ts) + +# Make the forecast +future_ts = ts.make_future(HORIZON) +forecast_ts = model.forecast(future_ts) +``` + +## Tutorials +We have also prepared a set of tutorials for an easy introduction: + +| Notebook | Interactive launch | +|:----------|------:| +| [Get started](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/get_started.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/get_started.ipynb) | +| [Backtest](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/backtest.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/backtest.ipynb) | +| [EDA](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/EDA.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/EDA.ipynb) | +| [Outliers](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/outliers.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/outliers.ipynb) | +| [Clustering](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/clustering.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/clustering.ipynb) | +| [Deep learning models](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/NN_examples.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/NN_examples.ipynb) | +| [Ensembles](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/ensembles.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/ensembles.ipynb) | + +## Documentation +ETNA documentation is available [here](https://etna-docs.netlify.app/). + +## Acknowledgments + +### ETNA.Team +[Alekseev Andrey](https://github.com/iKintosh), +[Shenshina Julia](https://github.com/julia-shenshina), +[Gabdushev Martin](https://github.com/martins0n), +[Kolesnikov Sergey](https://github.com/Scitator), +[Bunin Dmitriy](https://github.com/Mr-Geekman), +[Chikov Aleksandr](https://github.com/alex-hse-repository), +[Barinov Nikita](https://github.com/diadorer), +[Romantsov Nikolay](https://github.com/WinstonDovlatov), +[Makhin Artem](https://github.com/Ama16), +[Denisov Vladislav](https://github.com/v-v-denisov), +[Mitskovets Ivan](https://github.com/imitskovets), +[Munirova Albina](https://github.com/albinamunirova) + + +### ETNA.Contributors +[Levashov Artem](https://github.com/soft1q), +[Podkidyshev Aleksey](https://github.com/alekseyen) + +## License + +Feel free to use our library in your commercial and private applications. + +ETNA is covered by [Apache 2.0](/LICENSE). +Read more about this license [here](https://choosealicense.com/licenses/apache-2.0/) + + +%package -n python3-etna-ts +Summary: ETNA is the first python open source framework of Tinkoff.ru AI Center. It is designed to make working with time series simple, productive, and fun. +Provides: python-etna-ts +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-etna-ts +# ETNA Time Series Library + +[](https://pypi.org/project/etna-ts/) +[](https://pepy.tech/project/etna-ts) +[](https://codecov.io/gh/tinkoff-ai/etna-ts) + +[](https://t.me/etna_support) + +[Homepage](https://etna.tinkoff.ru) | +[Documentation](https://etna-docs.netlify.app/) | +[Tutorials](https://github.com/tinkoff-ai/etna-ts/tree/master/examples) | +[Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md) | +[Release Notes](https://github.com/tinkoff-ai/etna-ts/releases) + +ETNA is an easy-to-use time series forecasting framework. +It includes built in toolkits for time series preprocessing, feature generation, +a variety of predictive models with unified interface - from classic machine learning +to SOTA neural networks, models combination methods and smart backtesting. +ETNA is designed to make working with time series simple, productive, and fun. + +ETNA is the first python open source framework of +[Tinkoff.ru](https://www.tinkoff.ru/eng/) +Artificial Intelligence Center. +The library started as an internal product in our company - +we use it in over 10+ projects now, so we often release updates. +Contributions are welcome - check our [Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md). + + + +## Installation + +ETNA is on [PyPI](https://pypi.org/project/etna-ts), so you can use `pip` to install it. + +```bash +pip install --upgrade pip +pip install etna-ts +``` + + +## Get started +Here's some example code for a quick start. +```python +import pandas as pd +from etna.datasets.tsdataset import TSDataset +from etna.models import ProphetModel + +# Read the data +df = pd.read_csv("examples/data/example_dataset.csv") + +# Create a TSDataset +df = TSDataset.to_dataset(df) +ts = TSDataset(df, freq="D") + +# Choose a horizon +HORIZON = 8 + +# Fit the model +model = ProphetModel() +model.fit(ts) + +# Make the forecast +future_ts = ts.make_future(HORIZON) +forecast_ts = model.forecast(future_ts) +``` + +## Tutorials +We have also prepared a set of tutorials for an easy introduction: + +| Notebook | Interactive launch | +|:----------|------:| +| [Get started](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/get_started.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/get_started.ipynb) | +| [Backtest](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/backtest.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/backtest.ipynb) | +| [EDA](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/EDA.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/EDA.ipynb) | +| [Outliers](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/outliers.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/outliers.ipynb) | +| [Clustering](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/clustering.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/clustering.ipynb) | +| [Deep learning models](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/NN_examples.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/NN_examples.ipynb) | +| [Ensembles](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/ensembles.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/ensembles.ipynb) | + +## Documentation +ETNA documentation is available [here](https://etna-docs.netlify.app/). + +## Acknowledgments + +### ETNA.Team +[Alekseev Andrey](https://github.com/iKintosh), +[Shenshina Julia](https://github.com/julia-shenshina), +[Gabdushev Martin](https://github.com/martins0n), +[Kolesnikov Sergey](https://github.com/Scitator), +[Bunin Dmitriy](https://github.com/Mr-Geekman), +[Chikov Aleksandr](https://github.com/alex-hse-repository), +[Barinov Nikita](https://github.com/diadorer), +[Romantsov Nikolay](https://github.com/WinstonDovlatov), +[Makhin Artem](https://github.com/Ama16), +[Denisov Vladislav](https://github.com/v-v-denisov), +[Mitskovets Ivan](https://github.com/imitskovets), +[Munirova Albina](https://github.com/albinamunirova) + + +### ETNA.Contributors +[Levashov Artem](https://github.com/soft1q), +[Podkidyshev Aleksey](https://github.com/alekseyen) + +## License + +Feel free to use our library in your commercial and private applications. + +ETNA is covered by [Apache 2.0](/LICENSE). +Read more about this license [here](https://choosealicense.com/licenses/apache-2.0/) + + +%package help +Summary: Development documents and examples for etna-ts +Provides: python3-etna-ts-doc +%description help +# ETNA Time Series Library + +[](https://pypi.org/project/etna-ts/) +[](https://pepy.tech/project/etna-ts) +[](https://codecov.io/gh/tinkoff-ai/etna-ts) + +[](https://t.me/etna_support) + +[Homepage](https://etna.tinkoff.ru) | +[Documentation](https://etna-docs.netlify.app/) | +[Tutorials](https://github.com/tinkoff-ai/etna-ts/tree/master/examples) | +[Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md) | +[Release Notes](https://github.com/tinkoff-ai/etna-ts/releases) + +ETNA is an easy-to-use time series forecasting framework. +It includes built in toolkits for time series preprocessing, feature generation, +a variety of predictive models with unified interface - from classic machine learning +to SOTA neural networks, models combination methods and smart backtesting. +ETNA is designed to make working with time series simple, productive, and fun. + +ETNA is the first python open source framework of +[Tinkoff.ru](https://www.tinkoff.ru/eng/) +Artificial Intelligence Center. +The library started as an internal product in our company - +we use it in over 10+ projects now, so we often release updates. +Contributions are welcome - check our [Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md). + + + +## Installation + +ETNA is on [PyPI](https://pypi.org/project/etna-ts), so you can use `pip` to install it. + +```bash +pip install --upgrade pip +pip install etna-ts +``` + + +## Get started +Here's some example code for a quick start. +```python +import pandas as pd +from etna.datasets.tsdataset import TSDataset +from etna.models import ProphetModel + +# Read the data +df = pd.read_csv("examples/data/example_dataset.csv") + +# Create a TSDataset +df = TSDataset.to_dataset(df) +ts = TSDataset(df, freq="D") + +# Choose a horizon +HORIZON = 8 + +# Fit the model +model = ProphetModel() +model.fit(ts) + +# Make the forecast +future_ts = ts.make_future(HORIZON) +forecast_ts = model.forecast(future_ts) +``` + +## Tutorials +We have also prepared a set of tutorials for an easy introduction: + +| Notebook | Interactive launch | +|:----------|------:| +| [Get started](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/get_started.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/get_started.ipynb) | +| [Backtest](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/backtest.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/backtest.ipynb) | +| [EDA](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/EDA.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/EDA.ipynb) | +| [Outliers](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/outliers.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/outliers.ipynb) | +| [Clustering](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/clustering.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/clustering.ipynb) | +| [Deep learning models](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/NN_examples.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/NN_examples.ipynb) | +| [Ensembles](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/ensembles.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/ensembles.ipynb) | + +## Documentation +ETNA documentation is available [here](https://etna-docs.netlify.app/). + +## Acknowledgments + +### ETNA.Team +[Alekseev Andrey](https://github.com/iKintosh), +[Shenshina Julia](https://github.com/julia-shenshina), +[Gabdushev Martin](https://github.com/martins0n), +[Kolesnikov Sergey](https://github.com/Scitator), +[Bunin Dmitriy](https://github.com/Mr-Geekman), +[Chikov Aleksandr](https://github.com/alex-hse-repository), +[Barinov Nikita](https://github.com/diadorer), +[Romantsov Nikolay](https://github.com/WinstonDovlatov), +[Makhin Artem](https://github.com/Ama16), +[Denisov Vladislav](https://github.com/v-v-denisov), +[Mitskovets Ivan](https://github.com/imitskovets), +[Munirova Albina](https://github.com/albinamunirova) + + +### ETNA.Contributors +[Levashov Artem](https://github.com/soft1q), +[Podkidyshev Aleksey](https://github.com/alekseyen) + +## License + +Feel free to use our library in your commercial and private applications. + +ETNA is covered by [Apache 2.0](/LICENSE). +Read more about this license [here](https://choosealicense.com/licenses/apache-2.0/) + + +%prep +%autosetup -n etna-ts-1.3.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-etna-ts -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.1-1 +- Package Spec generated @@ -0,0 +1 @@ +bfa3839aec5394021368b868d12f4c2e etna-ts-1.3.1.tar.gz |