summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-11 00:00:56 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-11 00:00:56 +0000
commit2ac2bd59b226c9e55c5e0fa54758d957b2610b35 (patch)
tree9056e7703dfa5f5068f63c2bbf8fc45eccc56409
parent0563fd799271a6a23508b3dd19fc0de3f19f963f (diff)
automatic import of python-feature-engine
-rw-r--r--.gitignore1
-rw-r--r--python-feature-engine.spec803
-rw-r--r--sources1
3 files changed, 805 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..b96b059 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/feature_engine-1.6.0.tar.gz
diff --git a/python-feature-engine.spec b/python-feature-engine.spec
new file mode 100644
index 0000000..c83fc42
--- /dev/null
+++ b/python-feature-engine.spec
@@ -0,0 +1,803 @@
+%global _empty_manifest_terminate_build 0
+Name: python-feature-engine
+Version: 1.6.0
+Release: 1
+Summary: Feature engineering package with Scikit-learn's fit transform functionality
+License: BSD 3 clause
+URL: http://github.com/feature-engine/feature_engine
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/5e/71/60f381ce9e68004e96cb325b8c040800b35f3854a95a197412260edee124/feature_engine-1.6.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-pandas
+Requires: python3-scikit-learn
+Requires: python3-scipy
+Requires: python3-statsmodels
+
+%description
+# Feature Engine
+
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/feature_engine?logo=Python)](https://pypi.org/project/feature-engine/)
+[![GitHub](https://img.shields.io/github/license/feature-engine/feature_engine)](https://github.com/feature-engine/feature_engine/blob/master/LICENSE.md)
+[![PyPI](https://img.shields.io/pypi/v/feature_engine?logo=PyPI)](https://pypi.org/project/feature-engine)
+[![Conda](https://img.shields.io/conda/v/conda-forge/feature_engine?logo=Anaconda)](https://anaconda.org/conda-forge/feature_engine)
+[![CircleCI](https://img.shields.io/circleci/build/github/feature-engine/feature_engine/main?logo=CircleCI)](https://app.circleci.com/pipelines/github/feature-engine/feature_engine)
+[![Codecov](https://img.shields.io/codecov/c/github/feature-engine/feature_engine?logo=CodeCov&token=ZBKKSN6ERL)](https://codecov.io/github/feature-engine/feature_engine)
+[![Read the Docs](https://img.shields.io/readthedocs/feature_engine?logo=readthedocs)](https://feature-engine.readthedocs.io/en/latest/index.html)
+[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
+[![GitHub contributors](https://img.shields.io/github/contributors/feature-engine/feature_engine?logo=GitHub)](https://github.com/feature-engine/feature_engine/graphs/contributors)
+[![Gitter](https://img.shields.io/gitter/room/feature-engine/feaure_engine?logo=Gitter)](https://gitter.im/feature_engine/community)
+[![Total Downloads](https://pepy.tech/badge/feature-engine)](https://pepy.tech/project/feature-engine)
+[![Monthly Downloads](https://pepy.tech/badge/feature-engine/month)](https://pepy.tech/project/feature-engine)
+[![DOI](https://zenodo.org/badge/163630824.svg)](https://zenodo.org/badge/latestdoi/163630824)
+[![JOSS](https://joss.theoj.org/papers/10.21105/joss.03642/status.svg)](https://doi.org/10.21105/joss.03642)
+[![first-timers-only](https://img.shields.io/badge/first--timers--only-friendly-blue.svg?style=flat)](https://www.firsttimersonly.com/)
+[![Sponsorship](https://img.shields.io/badge/Powered%20By-TrainInData-orange.svg)](https://www.trainindata.com/)
+
+<div align="center">
+
+[![feature-engine logo](https://raw.githubusercontent.com/feature-engine/feature_engine/main/docs/images/logo/FeatureEngine.png)](http://feature-engine.readthedocs.io)
+
+</div>
+
+Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.
+Feature-engine's transformers follow Scikit-learn's functionality with fit() and transform() methods to learn the
+transforming parameters from the data and then transform it.
+
+
+## Feature-engine features in the following resources
+
+* [Feature Engineering for Machine Learning, Online Course](https://www.trainindata.com/p/feature-engineering-for-machine-learning)
+
+* [Feature Selection for Machine Learning, Online Course](https://www.trainindata.com/p/feature-selection-for-machine-learning)
+
+* [Feature Engineering for Time Series Forecasting, Online Course](https://www.trainindata.com/p/feature-engineering-for-forecasting)
+
+* [Python Feature Engineering Cookbook](https://packt.link/0ewSo)
+
+* [Feature Selection in Machine Learning with Python Book](https://leanpub.com/feature-selection-in-machine-learning)
+
+
+## Blogs about Feature-engine
+
+* [Feature-engine: A new open-source Python package for feature engineering](https://trainindata.medium.com/feature-engine-a-new-open-source-python-package-for-feature-engineering-29a0ab88ea7c)
+
+* [Practical Code Implementations of Feature Engineering for Machine Learning with Python](https://towardsdatascience.com/practical-code-implementations-of-feature-engineering-for-machine-learning-with-python-f13b953d4bcd)
+
+
+## Documentation
+
+* [Documentation](https://feature-engine.trainindata.com)
+
+
+## Current Feature-engine's transformers include functionality for:
+
+* Missing Data Imputation
+* Categorical Encoding
+* Discretisation
+* Outlier Capping or Removal
+* Variable Transformation
+* Variable Creation
+* Variable Selection
+* Datetime Features
+* Time Series
+* Preprocessing
+* Scikit-learn Wrappers
+
+### Imputation Methods
+* MeanMedianImputer
+* RandomSampleImputer
+* EndTailImputer
+* AddMissingIndicator
+* CategoricalImputer
+* ArbitraryNumberImputer
+* DropMissingData
+
+### Encoding Methods
+* OneHotEncoder
+* OrdinalEncoder
+* CountFrequencyEncoder
+* MeanEncoder
+* WoEEncoder
+* RareLabelEncoder
+* DecisionTreeEncoder
+* StringSimilarityEncoder
+
+### Discretisation methods
+* EqualFrequencyDiscretiser
+* EqualWidthDiscretiser
+* GeometricWidthDiscretiser
+* DecisionTreeDiscretiser
+* ArbitraryDiscreriser
+
+### Outlier Handling methods
+* Winsorizer
+* ArbitraryOutlierCapper
+* OutlierTrimmer
+
+### Variable Transformation methods
+* LogTransformer
+* LogCpTransformer
+* ReciprocalTransformer
+* ArcsinTransformer
+* PowerTransformer
+* BoxCoxTransformer
+* YeoJohnsonTransformer
+
+### Variable Creation:
+ * MathFeatures
+ * RelativeFeatures
+ * CyclicalFeatures
+
+### Feature Selection:
+ * DropFeatures
+ * DropConstantFeatures
+ * DropDuplicateFeatures
+ * DropCorrelatedFeatures
+ * SmartCorrelationSelection
+ * ShuffleFeaturesSelector
+ * SelectBySingleFeaturePerformance
+ * SelectByTargetMeanPerformance
+ * RecursiveFeatureElimination
+ * RecursiveFeatureAddition
+ * DropHighPSIFeatures
+ * SelectByInformationValue
+ * ProbeFeatureSelection
+
+### Datetime
+ * DatetimeFeatures
+ * DatetimeSubtraction
+
+### Time Series
+ * LagFeatures
+ * WindowFeatures
+ * ExpandingWindowFeatures
+
+### Preprocessing
+ * MatchCategories
+ * MatchVariables
+
+### Wrappers:
+ * SklearnTransformerWrapper
+
+## Installation
+
+From PyPI using pip:
+
+```
+pip install feature_engine
+```
+
+From Anaconda:
+
+```
+conda install -c conda-forge feature_engine
+```
+
+Or simply clone it:
+
+```
+git clone https://github.com/feature-engine/feature_engine.git
+```
+
+## Example Usage
+
+```python
+>>> import pandas as pd
+>>> from feature_engine.encoding import RareLabelEncoder
+
+>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
+>>> data = pd.DataFrame(data)
+>>> data['var_A'].value_counts()
+```
+
+```
+Out[1]:
+A 10
+B 10
+C 2
+D 1
+Name: var_A, dtype: int64
+```
+
+```python
+>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
+>>> data_encoded = rare_encoder.fit_transform(data)
+>>> data_encoded['var_A'].value_counts()
+```
+
+```
+Out[2]:
+A 10
+B 10
+Rare 3
+Name: var_A, dtype: int64
+```
+
+Find more examples in our [Jupyter Notebook Gallery](https://nbviewer.org/github/feature-engine/feature-engine-examples/tree/main/)
+or in the [documentation](https://feature-engine.trainindata.com).
+
+## Contribute
+
+Details about how to contribute can be found in the [Contribute Page](https://feature-engine.trainindata.com/en/latest/contribute/index.html)
+
+Briefly:
+
+- Fork the repo
+- Clone your fork into your local computer: ``git clone https://github.com/<YOURUSERNAME>/feature_engine.git``
+- navigate into the repo folder ``cd feature_engine``
+- Install Feature-engine as a developer: ``pip install -e .``
+- Optional: Create and activate a virtual environment with any tool of choice
+- Install Feature-engine dependencies: ``pip install -r requirements.txt`` and ``pip install -r test_requirements.txt``
+- Create a feature branch with a meaningful name for your feature: ``git checkout -b myfeaturebranch``
+- Develop your feature, tests and documentation
+- Make sure the tests pass
+- Make a PR
+
+Thank you!!
+
+
+### Documentation
+
+Feature-engine documentation is built using [Sphinx](https://www.sphinx-doc.org) and is hosted on [Read the Docs](https://readthedocs.org/).
+
+To build the documentation make sure you have the dependencies installed: from the root directory: ``pip install -r docs/requirements.txt``.
+
+Now you can build the docs using: ``sphinx-build -b html docs build``
+
+
+## License
+
+BSD 3-Clause
+
+## Sponsor us
+
+[Sponsor us](https://github.com/sponsors/feature-engine) and support further our
+mission to democratize machine learning and programming tools through open-source
+software.
+
+
+
+
+%package -n python3-feature-engine
+Summary: Feature engineering package with Scikit-learn's fit transform functionality
+Provides: python-feature-engine
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-feature-engine
+# Feature Engine
+
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/feature_engine?logo=Python)](https://pypi.org/project/feature-engine/)
+[![GitHub](https://img.shields.io/github/license/feature-engine/feature_engine)](https://github.com/feature-engine/feature_engine/blob/master/LICENSE.md)
+[![PyPI](https://img.shields.io/pypi/v/feature_engine?logo=PyPI)](https://pypi.org/project/feature-engine)
+[![Conda](https://img.shields.io/conda/v/conda-forge/feature_engine?logo=Anaconda)](https://anaconda.org/conda-forge/feature_engine)
+[![CircleCI](https://img.shields.io/circleci/build/github/feature-engine/feature_engine/main?logo=CircleCI)](https://app.circleci.com/pipelines/github/feature-engine/feature_engine)
+[![Codecov](https://img.shields.io/codecov/c/github/feature-engine/feature_engine?logo=CodeCov&token=ZBKKSN6ERL)](https://codecov.io/github/feature-engine/feature_engine)
+[![Read the Docs](https://img.shields.io/readthedocs/feature_engine?logo=readthedocs)](https://feature-engine.readthedocs.io/en/latest/index.html)
+[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
+[![GitHub contributors](https://img.shields.io/github/contributors/feature-engine/feature_engine?logo=GitHub)](https://github.com/feature-engine/feature_engine/graphs/contributors)
+[![Gitter](https://img.shields.io/gitter/room/feature-engine/feaure_engine?logo=Gitter)](https://gitter.im/feature_engine/community)
+[![Total Downloads](https://pepy.tech/badge/feature-engine)](https://pepy.tech/project/feature-engine)
+[![Monthly Downloads](https://pepy.tech/badge/feature-engine/month)](https://pepy.tech/project/feature-engine)
+[![DOI](https://zenodo.org/badge/163630824.svg)](https://zenodo.org/badge/latestdoi/163630824)
+[![JOSS](https://joss.theoj.org/papers/10.21105/joss.03642/status.svg)](https://doi.org/10.21105/joss.03642)
+[![first-timers-only](https://img.shields.io/badge/first--timers--only-friendly-blue.svg?style=flat)](https://www.firsttimersonly.com/)
+[![Sponsorship](https://img.shields.io/badge/Powered%20By-TrainInData-orange.svg)](https://www.trainindata.com/)
+
+<div align="center">
+
+[![feature-engine logo](https://raw.githubusercontent.com/feature-engine/feature_engine/main/docs/images/logo/FeatureEngine.png)](http://feature-engine.readthedocs.io)
+
+</div>
+
+Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.
+Feature-engine's transformers follow Scikit-learn's functionality with fit() and transform() methods to learn the
+transforming parameters from the data and then transform it.
+
+
+## Feature-engine features in the following resources
+
+* [Feature Engineering for Machine Learning, Online Course](https://www.trainindata.com/p/feature-engineering-for-machine-learning)
+
+* [Feature Selection for Machine Learning, Online Course](https://www.trainindata.com/p/feature-selection-for-machine-learning)
+
+* [Feature Engineering for Time Series Forecasting, Online Course](https://www.trainindata.com/p/feature-engineering-for-forecasting)
+
+* [Python Feature Engineering Cookbook](https://packt.link/0ewSo)
+
+* [Feature Selection in Machine Learning with Python Book](https://leanpub.com/feature-selection-in-machine-learning)
+
+
+## Blogs about Feature-engine
+
+* [Feature-engine: A new open-source Python package for feature engineering](https://trainindata.medium.com/feature-engine-a-new-open-source-python-package-for-feature-engineering-29a0ab88ea7c)
+
+* [Practical Code Implementations of Feature Engineering for Machine Learning with Python](https://towardsdatascience.com/practical-code-implementations-of-feature-engineering-for-machine-learning-with-python-f13b953d4bcd)
+
+
+## Documentation
+
+* [Documentation](https://feature-engine.trainindata.com)
+
+
+## Current Feature-engine's transformers include functionality for:
+
+* Missing Data Imputation
+* Categorical Encoding
+* Discretisation
+* Outlier Capping or Removal
+* Variable Transformation
+* Variable Creation
+* Variable Selection
+* Datetime Features
+* Time Series
+* Preprocessing
+* Scikit-learn Wrappers
+
+### Imputation Methods
+* MeanMedianImputer
+* RandomSampleImputer
+* EndTailImputer
+* AddMissingIndicator
+* CategoricalImputer
+* ArbitraryNumberImputer
+* DropMissingData
+
+### Encoding Methods
+* OneHotEncoder
+* OrdinalEncoder
+* CountFrequencyEncoder
+* MeanEncoder
+* WoEEncoder
+* RareLabelEncoder
+* DecisionTreeEncoder
+* StringSimilarityEncoder
+
+### Discretisation methods
+* EqualFrequencyDiscretiser
+* EqualWidthDiscretiser
+* GeometricWidthDiscretiser
+* DecisionTreeDiscretiser
+* ArbitraryDiscreriser
+
+### Outlier Handling methods
+* Winsorizer
+* ArbitraryOutlierCapper
+* OutlierTrimmer
+
+### Variable Transformation methods
+* LogTransformer
+* LogCpTransformer
+* ReciprocalTransformer
+* ArcsinTransformer
+* PowerTransformer
+* BoxCoxTransformer
+* YeoJohnsonTransformer
+
+### Variable Creation:
+ * MathFeatures
+ * RelativeFeatures
+ * CyclicalFeatures
+
+### Feature Selection:
+ * DropFeatures
+ * DropConstantFeatures
+ * DropDuplicateFeatures
+ * DropCorrelatedFeatures
+ * SmartCorrelationSelection
+ * ShuffleFeaturesSelector
+ * SelectBySingleFeaturePerformance
+ * SelectByTargetMeanPerformance
+ * RecursiveFeatureElimination
+ * RecursiveFeatureAddition
+ * DropHighPSIFeatures
+ * SelectByInformationValue
+ * ProbeFeatureSelection
+
+### Datetime
+ * DatetimeFeatures
+ * DatetimeSubtraction
+
+### Time Series
+ * LagFeatures
+ * WindowFeatures
+ * ExpandingWindowFeatures
+
+### Preprocessing
+ * MatchCategories
+ * MatchVariables
+
+### Wrappers:
+ * SklearnTransformerWrapper
+
+## Installation
+
+From PyPI using pip:
+
+```
+pip install feature_engine
+```
+
+From Anaconda:
+
+```
+conda install -c conda-forge feature_engine
+```
+
+Or simply clone it:
+
+```
+git clone https://github.com/feature-engine/feature_engine.git
+```
+
+## Example Usage
+
+```python
+>>> import pandas as pd
+>>> from feature_engine.encoding import RareLabelEncoder
+
+>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
+>>> data = pd.DataFrame(data)
+>>> data['var_A'].value_counts()
+```
+
+```
+Out[1]:
+A 10
+B 10
+C 2
+D 1
+Name: var_A, dtype: int64
+```
+
+```python
+>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
+>>> data_encoded = rare_encoder.fit_transform(data)
+>>> data_encoded['var_A'].value_counts()
+```
+
+```
+Out[2]:
+A 10
+B 10
+Rare 3
+Name: var_A, dtype: int64
+```
+
+Find more examples in our [Jupyter Notebook Gallery](https://nbviewer.org/github/feature-engine/feature-engine-examples/tree/main/)
+or in the [documentation](https://feature-engine.trainindata.com).
+
+## Contribute
+
+Details about how to contribute can be found in the [Contribute Page](https://feature-engine.trainindata.com/en/latest/contribute/index.html)
+
+Briefly:
+
+- Fork the repo
+- Clone your fork into your local computer: ``git clone https://github.com/<YOURUSERNAME>/feature_engine.git``
+- navigate into the repo folder ``cd feature_engine``
+- Install Feature-engine as a developer: ``pip install -e .``
+- Optional: Create and activate a virtual environment with any tool of choice
+- Install Feature-engine dependencies: ``pip install -r requirements.txt`` and ``pip install -r test_requirements.txt``
+- Create a feature branch with a meaningful name for your feature: ``git checkout -b myfeaturebranch``
+- Develop your feature, tests and documentation
+- Make sure the tests pass
+- Make a PR
+
+Thank you!!
+
+
+### Documentation
+
+Feature-engine documentation is built using [Sphinx](https://www.sphinx-doc.org) and is hosted on [Read the Docs](https://readthedocs.org/).
+
+To build the documentation make sure you have the dependencies installed: from the root directory: ``pip install -r docs/requirements.txt``.
+
+Now you can build the docs using: ``sphinx-build -b html docs build``
+
+
+## License
+
+BSD 3-Clause
+
+## Sponsor us
+
+[Sponsor us](https://github.com/sponsors/feature-engine) and support further our
+mission to democratize machine learning and programming tools through open-source
+software.
+
+
+
+
+%package help
+Summary: Development documents and examples for feature-engine
+Provides: python3-feature-engine-doc
+%description help
+# Feature Engine
+
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/feature_engine?logo=Python)](https://pypi.org/project/feature-engine/)
+[![GitHub](https://img.shields.io/github/license/feature-engine/feature_engine)](https://github.com/feature-engine/feature_engine/blob/master/LICENSE.md)
+[![PyPI](https://img.shields.io/pypi/v/feature_engine?logo=PyPI)](https://pypi.org/project/feature-engine)
+[![Conda](https://img.shields.io/conda/v/conda-forge/feature_engine?logo=Anaconda)](https://anaconda.org/conda-forge/feature_engine)
+[![CircleCI](https://img.shields.io/circleci/build/github/feature-engine/feature_engine/main?logo=CircleCI)](https://app.circleci.com/pipelines/github/feature-engine/feature_engine)
+[![Codecov](https://img.shields.io/codecov/c/github/feature-engine/feature_engine?logo=CodeCov&token=ZBKKSN6ERL)](https://codecov.io/github/feature-engine/feature_engine)
+[![Read the Docs](https://img.shields.io/readthedocs/feature_engine?logo=readthedocs)](https://feature-engine.readthedocs.io/en/latest/index.html)
+[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
+[![GitHub contributors](https://img.shields.io/github/contributors/feature-engine/feature_engine?logo=GitHub)](https://github.com/feature-engine/feature_engine/graphs/contributors)
+[![Gitter](https://img.shields.io/gitter/room/feature-engine/feaure_engine?logo=Gitter)](https://gitter.im/feature_engine/community)
+[![Total Downloads](https://pepy.tech/badge/feature-engine)](https://pepy.tech/project/feature-engine)
+[![Monthly Downloads](https://pepy.tech/badge/feature-engine/month)](https://pepy.tech/project/feature-engine)
+[![DOI](https://zenodo.org/badge/163630824.svg)](https://zenodo.org/badge/latestdoi/163630824)
+[![JOSS](https://joss.theoj.org/papers/10.21105/joss.03642/status.svg)](https://doi.org/10.21105/joss.03642)
+[![first-timers-only](https://img.shields.io/badge/first--timers--only-friendly-blue.svg?style=flat)](https://www.firsttimersonly.com/)
+[![Sponsorship](https://img.shields.io/badge/Powered%20By-TrainInData-orange.svg)](https://www.trainindata.com/)
+
+<div align="center">
+
+[![feature-engine logo](https://raw.githubusercontent.com/feature-engine/feature_engine/main/docs/images/logo/FeatureEngine.png)](http://feature-engine.readthedocs.io)
+
+</div>
+
+Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.
+Feature-engine's transformers follow Scikit-learn's functionality with fit() and transform() methods to learn the
+transforming parameters from the data and then transform it.
+
+
+## Feature-engine features in the following resources
+
+* [Feature Engineering for Machine Learning, Online Course](https://www.trainindata.com/p/feature-engineering-for-machine-learning)
+
+* [Feature Selection for Machine Learning, Online Course](https://www.trainindata.com/p/feature-selection-for-machine-learning)
+
+* [Feature Engineering for Time Series Forecasting, Online Course](https://www.trainindata.com/p/feature-engineering-for-forecasting)
+
+* [Python Feature Engineering Cookbook](https://packt.link/0ewSo)
+
+* [Feature Selection in Machine Learning with Python Book](https://leanpub.com/feature-selection-in-machine-learning)
+
+
+## Blogs about Feature-engine
+
+* [Feature-engine: A new open-source Python package for feature engineering](https://trainindata.medium.com/feature-engine-a-new-open-source-python-package-for-feature-engineering-29a0ab88ea7c)
+
+* [Practical Code Implementations of Feature Engineering for Machine Learning with Python](https://towardsdatascience.com/practical-code-implementations-of-feature-engineering-for-machine-learning-with-python-f13b953d4bcd)
+
+
+## Documentation
+
+* [Documentation](https://feature-engine.trainindata.com)
+
+
+## Current Feature-engine's transformers include functionality for:
+
+* Missing Data Imputation
+* Categorical Encoding
+* Discretisation
+* Outlier Capping or Removal
+* Variable Transformation
+* Variable Creation
+* Variable Selection
+* Datetime Features
+* Time Series
+* Preprocessing
+* Scikit-learn Wrappers
+
+### Imputation Methods
+* MeanMedianImputer
+* RandomSampleImputer
+* EndTailImputer
+* AddMissingIndicator
+* CategoricalImputer
+* ArbitraryNumberImputer
+* DropMissingData
+
+### Encoding Methods
+* OneHotEncoder
+* OrdinalEncoder
+* CountFrequencyEncoder
+* MeanEncoder
+* WoEEncoder
+* RareLabelEncoder
+* DecisionTreeEncoder
+* StringSimilarityEncoder
+
+### Discretisation methods
+* EqualFrequencyDiscretiser
+* EqualWidthDiscretiser
+* GeometricWidthDiscretiser
+* DecisionTreeDiscretiser
+* ArbitraryDiscreriser
+
+### Outlier Handling methods
+* Winsorizer
+* ArbitraryOutlierCapper
+* OutlierTrimmer
+
+### Variable Transformation methods
+* LogTransformer
+* LogCpTransformer
+* ReciprocalTransformer
+* ArcsinTransformer
+* PowerTransformer
+* BoxCoxTransformer
+* YeoJohnsonTransformer
+
+### Variable Creation:
+ * MathFeatures
+ * RelativeFeatures
+ * CyclicalFeatures
+
+### Feature Selection:
+ * DropFeatures
+ * DropConstantFeatures
+ * DropDuplicateFeatures
+ * DropCorrelatedFeatures
+ * SmartCorrelationSelection
+ * ShuffleFeaturesSelector
+ * SelectBySingleFeaturePerformance
+ * SelectByTargetMeanPerformance
+ * RecursiveFeatureElimination
+ * RecursiveFeatureAddition
+ * DropHighPSIFeatures
+ * SelectByInformationValue
+ * ProbeFeatureSelection
+
+### Datetime
+ * DatetimeFeatures
+ * DatetimeSubtraction
+
+### Time Series
+ * LagFeatures
+ * WindowFeatures
+ * ExpandingWindowFeatures
+
+### Preprocessing
+ * MatchCategories
+ * MatchVariables
+
+### Wrappers:
+ * SklearnTransformerWrapper
+
+## Installation
+
+From PyPI using pip:
+
+```
+pip install feature_engine
+```
+
+From Anaconda:
+
+```
+conda install -c conda-forge feature_engine
+```
+
+Or simply clone it:
+
+```
+git clone https://github.com/feature-engine/feature_engine.git
+```
+
+## Example Usage
+
+```python
+>>> import pandas as pd
+>>> from feature_engine.encoding import RareLabelEncoder
+
+>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
+>>> data = pd.DataFrame(data)
+>>> data['var_A'].value_counts()
+```
+
+```
+Out[1]:
+A 10
+B 10
+C 2
+D 1
+Name: var_A, dtype: int64
+```
+
+```python
+>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
+>>> data_encoded = rare_encoder.fit_transform(data)
+>>> data_encoded['var_A'].value_counts()
+```
+
+```
+Out[2]:
+A 10
+B 10
+Rare 3
+Name: var_A, dtype: int64
+```
+
+Find more examples in our [Jupyter Notebook Gallery](https://nbviewer.org/github/feature-engine/feature-engine-examples/tree/main/)
+or in the [documentation](https://feature-engine.trainindata.com).
+
+## Contribute
+
+Details about how to contribute can be found in the [Contribute Page](https://feature-engine.trainindata.com/en/latest/contribute/index.html)
+
+Briefly:
+
+- Fork the repo
+- Clone your fork into your local computer: ``git clone https://github.com/<YOURUSERNAME>/feature_engine.git``
+- navigate into the repo folder ``cd feature_engine``
+- Install Feature-engine as a developer: ``pip install -e .``
+- Optional: Create and activate a virtual environment with any tool of choice
+- Install Feature-engine dependencies: ``pip install -r requirements.txt`` and ``pip install -r test_requirements.txt``
+- Create a feature branch with a meaningful name for your feature: ``git checkout -b myfeaturebranch``
+- Develop your feature, tests and documentation
+- Make sure the tests pass
+- Make a PR
+
+Thank you!!
+
+
+### Documentation
+
+Feature-engine documentation is built using [Sphinx](https://www.sphinx-doc.org) and is hosted on [Read the Docs](https://readthedocs.org/).
+
+To build the documentation make sure you have the dependencies installed: from the root directory: ``pip install -r docs/requirements.txt``.
+
+Now you can build the docs using: ``sphinx-build -b html docs build``
+
+
+## License
+
+BSD 3-Clause
+
+## Sponsor us
+
+[Sponsor us](https://github.com/sponsors/feature-engine) and support further our
+mission to democratize machine learning and programming tools through open-source
+software.
+
+
+
+
+%prep
+%autosetup -n feature-engine-1.6.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-feature-engine -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.6.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..604ca0b
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+ae4122fd1983d050af3b60563422858c feature_engine-1.6.0.tar.gz