diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-10 21:58:56 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-10 21:58:56 +0000 |
commit | d630dee1ba84d39649a5bbf0eebbb2e822e002a7 (patch) | |
tree | 1b3470d52ad35b57fb50dfa998d7907a3fbc08b6 | |
parent | 6a63efcced3fc7ce43af2a959af5a7d87534f07d (diff) |
automatic import of python-gluonts
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-gluonts.spec | 563 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 565 insertions, 0 deletions
@@ -0,0 +1 @@ +/gluonts-0.12.6.tar.gz diff --git a/python-gluonts.spec b/python-gluonts.spec new file mode 100644 index 0000000..bfe3adb --- /dev/null +++ b/python-gluonts.spec @@ -0,0 +1,563 @@ +%global _empty_manifest_terminate_build 0 +Name: python-gluonts +Version: 0.12.6 +Release: 1 +Summary: Probabilistic time series modeling in Python. +License: Apache License 2.0 +URL: https://github.com/awslabs/gluonts/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/91/6a/b69d702e1cd50675974a38a0c3247774192dc7047baf729332e1482b7526/gluonts-0.12.6.tar.gz +BuildArch: noarch + +Requires: python3-ipykernel +Requires: python3-numpy +Requires: python3-pandas +Requires: python3-pydantic +Requires: python3-tqdm +Requires: python3-toolz +Requires: python3-typing-extensions +Requires: python3-prophet +Requires: python3-rpy2 +Requires: python3-pyarrow +Requires: python3-pyarrow +Requires: python3-ipython +Requires: python3-ipykernel +Requires: python3-nbconvert +Requires: python3-nbsphinx +Requires: python3-notedown +Requires: python3-pytest-runner +Requires: python3-recommonmark +Requires: python3-sphinx +Requires: python3-docutils +Requires: python3-optuna +Requires: python3-furo +Requires: python3-m2r2 +Requires: python3-myst-parser +Requires: python3-click +Requires: python3-orjson +Requires: python3-black +Requires: python3-holidays +Requires: python3-matplotlib +Requires: python3-pandas +Requires: python3-flaky +Requires: python3-pytest-cov +Requires: python3-pytest-timeout +Requires: python3-pytest-xdist +Requires: python3-pytest +Requires: python3-ujson +Requires: python3-requests +Requires: python3-flask +Requires: python3-gunicorn +Requires: python3-sagemaker +Requires: python3-s3fs +Requires: python3-fsspec +Requires: python3-pyarrow +Requires: python3-pyarrow +Requires: python3-s3fs +Requires: python3-ipython +Requires: python3-nbconvert +Requires: python3-nbsphinx +Requires: python3-notedown +Requires: python3-pytest-runner +Requires: python3-recommonmark +Requires: python3-sphinx +Requires: python3-docutils +Requires: python3-optuna +Requires: python3-furo +Requires: python3-m2r2 +Requires: python3-myst-parser +Requires: python3-click +Requires: python3-orjson +Requires: python3-black +Requires: python3-holidays +Requires: python3-matplotlib +Requires: python3-numpy +Requires: python3-mxnet +Requires: python3-orjson +Requires: python3-pyarrow +Requires: python3-pyarrow +Requires: python3-flask +Requires: python3-gunicorn +Requires: python3-torch +Requires: python3-pytorch-lightning +Requires: python3-protobuf +Requires: python3-scipy +Requires: python3-scipy + +%description +<img class="hide-on-website" height="100px" src="https://ts.gluon.ai/dev/_static/gluonts.svg"> + +# GluonTS - Probabilistic Time Series Modeling in Python + +[](https://pypi.org/project/gluonts/) +[](./LICENSE) +[](https://ts.gluon.ai/) +[](https://ts.gluon.ai/dev/) +[](https://pepy.tech/project/gluonts) + +GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, +based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org). + + +## Installation + +GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`: + +```bash +# support for mxnet models, faster datasets +pip install "gluonts[mxnet,pro]" + +# support for torch models, faster datasets +pip install "gluonts[torch,pro]" +``` + +## Simple Example + +To illustrate how to use GluonTS, we train a DeepAR-model and make predictions +using the simple "airpassengers" dataset. The dataset consists of a single +time series, containing monthly international passengers between the years +1949 and 1960, a total of 144 values (12 years * 12 months). We split the +dataset into train and test parts, by removing the last three years (36 month) +from the train data. Thus, we will train a model on just the first nine years +of data. + + +```py +import pandas as pd +import matplotlib.pyplot as plt +from gluonts.dataset.pandas import PandasDataset +from gluonts.dataset.split import split +from gluonts.mx import DeepAREstimator, Trainer + +# Load data from a CSV file into a PandasDataset +df = pd.read_csv( + "https://raw.githubusercontent.com/AileenNielsen/" + "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv", + index_col=0, + parse_dates=True, +) +dataset = PandasDataset(df, target="#Passengers") + +# Train a DeepAR model on all data but the last 36 months +training_data, test_gen = split(dataset, offset=-36) +model = DeepAREstimator( + prediction_length=12, freq="M", trainer=Trainer(epochs=5) +).train(training_data) + +# Generate test instances and predictions for them +test_data = test_gen.generate_instances(prediction_length=12, windows=3) +forecasts = list(model.predict(test_data.input)) + +# Plot predictions +df["#Passengers"].plot(color="black") +for forecast, color in zip(forecasts, ["green", "blue", "purple"]): + forecast.plot(color=f"tab:{color}") +plt.legend(["True values"], loc="upper left", fontsize="xx-large") +``` + +![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png) + + +Note that the forecasts are displayed in terms of a probability distribution: +The shaded areas represent the 50% and 90% prediction intervals, respectively, +centered around the median. + +## Contributing + +If you wish to contribute to the project, please refer to our +[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md). + +## Citing + +If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers, +in addition to any model-specific references that are relevant for your work: + +```bibtex +@article{gluonts_jmlr, + author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider + and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix + and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and + Ali Caner Türkmen and Yuyang Wang}, + title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}}, + journal = {Journal of Machine Learning Research}, + year = {2020}, + volume = {21}, + number = {116}, + pages = {1-6}, + url = {http://jmlr.org/papers/v21/19-820.html} +} +``` + +```bibtex +@article{gluonts_arxiv, + author = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and + Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C. + and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and + Türkmen, A. C. and Wang, Y.}, + title = {{GluonTS: Probabilistic Time Series Modeling in Python}}, + journal = {arXiv preprint arXiv:1906.05264}, + year = {2019} +} +``` + +## Links + +### Documentation + +* [Documentation (stable)](https://ts.gluon.ai/stable/) +* [Documentation (development)](https://ts.gluon.ai/dev/) + +### References + +* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html) +* [ArXiv Paper](https://arxiv.org/abs/1906.05264) +* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography. + +### Tutorials and Workshops + +* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c). +* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/) +* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/) +* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/) +* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/) +* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8) +* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/) + + + + +%package -n python3-gluonts +Summary: Probabilistic time series modeling in Python. +Provides: python-gluonts +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-gluonts +<img class="hide-on-website" height="100px" src="https://ts.gluon.ai/dev/_static/gluonts.svg"> + +# GluonTS - Probabilistic Time Series Modeling in Python + +[](https://pypi.org/project/gluonts/) +[](./LICENSE) +[](https://ts.gluon.ai/) +[](https://ts.gluon.ai/dev/) +[](https://pepy.tech/project/gluonts) + +GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, +based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org). + + +## Installation + +GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`: + +```bash +# support for mxnet models, faster datasets +pip install "gluonts[mxnet,pro]" + +# support for torch models, faster datasets +pip install "gluonts[torch,pro]" +``` + +## Simple Example + +To illustrate how to use GluonTS, we train a DeepAR-model and make predictions +using the simple "airpassengers" dataset. The dataset consists of a single +time series, containing monthly international passengers between the years +1949 and 1960, a total of 144 values (12 years * 12 months). We split the +dataset into train and test parts, by removing the last three years (36 month) +from the train data. Thus, we will train a model on just the first nine years +of data. + + +```py +import pandas as pd +import matplotlib.pyplot as plt +from gluonts.dataset.pandas import PandasDataset +from gluonts.dataset.split import split +from gluonts.mx import DeepAREstimator, Trainer + +# Load data from a CSV file into a PandasDataset +df = pd.read_csv( + "https://raw.githubusercontent.com/AileenNielsen/" + "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv", + index_col=0, + parse_dates=True, +) +dataset = PandasDataset(df, target="#Passengers") + +# Train a DeepAR model on all data but the last 36 months +training_data, test_gen = split(dataset, offset=-36) +model = DeepAREstimator( + prediction_length=12, freq="M", trainer=Trainer(epochs=5) +).train(training_data) + +# Generate test instances and predictions for them +test_data = test_gen.generate_instances(prediction_length=12, windows=3) +forecasts = list(model.predict(test_data.input)) + +# Plot predictions +df["#Passengers"].plot(color="black") +for forecast, color in zip(forecasts, ["green", "blue", "purple"]): + forecast.plot(color=f"tab:{color}") +plt.legend(["True values"], loc="upper left", fontsize="xx-large") +``` + +![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png) + + +Note that the forecasts are displayed in terms of a probability distribution: +The shaded areas represent the 50% and 90% prediction intervals, respectively, +centered around the median. + +## Contributing + +If you wish to contribute to the project, please refer to our +[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md). + +## Citing + +If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers, +in addition to any model-specific references that are relevant for your work: + +```bibtex +@article{gluonts_jmlr, + author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider + and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix + and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and + Ali Caner Türkmen and Yuyang Wang}, + title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}}, + journal = {Journal of Machine Learning Research}, + year = {2020}, + volume = {21}, + number = {116}, + pages = {1-6}, + url = {http://jmlr.org/papers/v21/19-820.html} +} +``` + +```bibtex +@article{gluonts_arxiv, + author = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and + Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C. + and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and + Türkmen, A. C. and Wang, Y.}, + title = {{GluonTS: Probabilistic Time Series Modeling in Python}}, + journal = {arXiv preprint arXiv:1906.05264}, + year = {2019} +} +``` + +## Links + +### Documentation + +* [Documentation (stable)](https://ts.gluon.ai/stable/) +* [Documentation (development)](https://ts.gluon.ai/dev/) + +### References + +* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html) +* [ArXiv Paper](https://arxiv.org/abs/1906.05264) +* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography. + +### Tutorials and Workshops + +* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c). +* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/) +* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/) +* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/) +* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/) +* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8) +* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/) + + + + +%package help +Summary: Development documents and examples for gluonts +Provides: python3-gluonts-doc +%description help +<img class="hide-on-website" height="100px" src="https://ts.gluon.ai/dev/_static/gluonts.svg"> + +# GluonTS - Probabilistic Time Series Modeling in Python + +[](https://pypi.org/project/gluonts/) +[](./LICENSE) +[](https://ts.gluon.ai/) +[](https://ts.gluon.ai/dev/) +[](https://pepy.tech/project/gluonts) + +GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, +based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org). + + +## Installation + +GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`: + +```bash +# support for mxnet models, faster datasets +pip install "gluonts[mxnet,pro]" + +# support for torch models, faster datasets +pip install "gluonts[torch,pro]" +``` + +## Simple Example + +To illustrate how to use GluonTS, we train a DeepAR-model and make predictions +using the simple "airpassengers" dataset. The dataset consists of a single +time series, containing monthly international passengers between the years +1949 and 1960, a total of 144 values (12 years * 12 months). We split the +dataset into train and test parts, by removing the last three years (36 month) +from the train data. Thus, we will train a model on just the first nine years +of data. + + +```py +import pandas as pd +import matplotlib.pyplot as plt +from gluonts.dataset.pandas import PandasDataset +from gluonts.dataset.split import split +from gluonts.mx import DeepAREstimator, Trainer + +# Load data from a CSV file into a PandasDataset +df = pd.read_csv( + "https://raw.githubusercontent.com/AileenNielsen/" + "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv", + index_col=0, + parse_dates=True, +) +dataset = PandasDataset(df, target="#Passengers") + +# Train a DeepAR model on all data but the last 36 months +training_data, test_gen = split(dataset, offset=-36) +model = DeepAREstimator( + prediction_length=12, freq="M", trainer=Trainer(epochs=5) +).train(training_data) + +# Generate test instances and predictions for them +test_data = test_gen.generate_instances(prediction_length=12, windows=3) +forecasts = list(model.predict(test_data.input)) + +# Plot predictions +df["#Passengers"].plot(color="black") +for forecast, color in zip(forecasts, ["green", "blue", "purple"]): + forecast.plot(color=f"tab:{color}") +plt.legend(["True values"], loc="upper left", fontsize="xx-large") +``` + +![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png) + + +Note that the forecasts are displayed in terms of a probability distribution: +The shaded areas represent the 50% and 90% prediction intervals, respectively, +centered around the median. + +## Contributing + +If you wish to contribute to the project, please refer to our +[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md). + +## Citing + +If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers, +in addition to any model-specific references that are relevant for your work: + +```bibtex +@article{gluonts_jmlr, + author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider + and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix + and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and + Ali Caner Türkmen and Yuyang Wang}, + title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}}, + journal = {Journal of Machine Learning Research}, + year = {2020}, + volume = {21}, + number = {116}, + pages = {1-6}, + url = {http://jmlr.org/papers/v21/19-820.html} +} +``` + +```bibtex +@article{gluonts_arxiv, + author = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and + Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C. + and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and + Türkmen, A. C. and Wang, Y.}, + title = {{GluonTS: Probabilistic Time Series Modeling in Python}}, + journal = {arXiv preprint arXiv:1906.05264}, + year = {2019} +} +``` + +## Links + +### Documentation + +* [Documentation (stable)](https://ts.gluon.ai/stable/) +* [Documentation (development)](https://ts.gluon.ai/dev/) + +### References + +* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html) +* [ArXiv Paper](https://arxiv.org/abs/1906.05264) +* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography. + +### Tutorials and Workshops + +* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c). +* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/) +* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/) +* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/) +* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/) +* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8) +* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/) + + + + +%prep +%autosetup -n gluonts-0.12.6 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-gluonts -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.12.6-1 +- Package Spec generated @@ -0,0 +1 @@ +02379befd21e067323ef9dbe2eac91a4 gluonts-0.12.6.tar.gz |