diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-10 05:59:20 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-10 05:59:20 +0000 |
commit | 392f817c7a4b0d7f3dbb2b6e39de9a807e8cf8f8 (patch) | |
tree | c353864e92d5ff6e85fc3b7b2195c7400df1d065 | |
parent | 02b67bd0bdabfc11146c4562212f7a77a693a385 (diff) |
automatic import of python-labml-nn
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-labml-nn.spec | 677 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 679 insertions, 0 deletions
@@ -0,0 +1 @@ +/labml-nn-0.4.133.tar.gz diff --git a/python-labml-nn.spec b/python-labml-nn.spec new file mode 100644 index 0000000..7106ac2 --- /dev/null +++ b/python-labml-nn.spec @@ -0,0 +1,677 @@ +%global _empty_manifest_terminate_build 0 +Name: python-labml-nn +Version: 0.4.133 +Release: 1 +Summary: đ§âđŤ Implementations/tutorials of deep learning papers with side-by-side notes đ; including transformers (original, xl, switch, feedback, vit), optimizers (adam, radam, adabelief), gans(dcgan, cyclegan, stylegan2), đŽ reinforcement learning (ppo, dqn), capsnet, distillation, diffusion, etc. đ§ +License: MIT License +URL: https://github.com/labmlai/annotated_deep_learning_paper_implementations +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ad/cd/0bc62f5b0208dbe8ed0c0fb2d7f548a6e7d6921665f8e0809b79a2d172ba/labml-nn-0.4.133.tar.gz +BuildArch: noarch + +Requires: python3-labml +Requires: python3-labml-helpers +Requires: python3-torch +Requires: python3-torchtext +Requires: python3-torchvision +Requires: python3-einops +Requires: python3-numpy +Requires: python3-fairscale + +%description +[](https://twitter.com/labmlai) +[](https://github.com/sponsors/labmlai) + +# [labml.ai Deep Learning Paper Implementations](https://nn.labml.ai/index.html) + +This is a collection of simple PyTorch implementations of +neural networks and related algorithms. +These implementations are documented with explanations, + +[The website](https://nn.labml.ai/index.html) +renders these as side-by-side formatted notes. +We believe these would help you understand these algorithms better. + + + +We are actively maintaining this repo and adding new +implementations almost weekly. +[](https://twitter.com/labmlai) for updates. + +## Paper Implementations + +#### ⨠[Transformers](https://nn.labml.ai/transformers/index.html) + +* [Multi-headed attention](https://nn.labml.ai/transformers/mha.html) +* [Transformer building blocks](https://nn.labml.ai/transformers/models.html) +* [Transformer XL](https://nn.labml.ai/transformers/xl/index.html) + * [Relative multi-headed attention](https://nn.labml.ai/transformers/xl/relative_mha.html) +* [Rotary Positional Embeddings](https://nn.labml.ai/transformers/rope/index.html) +* [Attention with Linear Biases (ALiBi)](https://nn.labml.ai/transformers/alibi/index.html) +* [RETRO](https://nn.labml.ai/transformers/retro/index.html) +* [Compressive Transformer](https://nn.labml.ai/transformers/compressive/index.html) +* [GPT Architecture](https://nn.labml.ai/transformers/gpt/index.html) +* [GLU Variants](https://nn.labml.ai/transformers/glu_variants/simple.html) +* [kNN-LM: Generalization through Memorization](https://nn.labml.ai/transformers/knn) +* [Feedback Transformer](https://nn.labml.ai/transformers/feedback/index.html) +* [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html) +* [Fast Weights Transformer](https://nn.labml.ai/transformers/fast_weights/index.html) +* [FNet](https://nn.labml.ai/transformers/fnet/index.html) +* [Attention Free Transformer](https://nn.labml.ai/transformers/aft/index.html) +* [Masked Language Model](https://nn.labml.ai/transformers/mlm/index.html) +* [MLP-Mixer: An all-MLP Architecture for Vision](https://nn.labml.ai/transformers/mlp_mixer/index.html) +* [Pay Attention to MLPs (gMLP)](https://nn.labml.ai/transformers/gmlp/index.html) +* [Vision Transformer (ViT)](https://nn.labml.ai/transformers/vit/index.html) +* [Primer EZ](https://nn.labml.ai/transformers/primer_ez/index.html) +* [Hourglass](https://nn.labml.ai/transformers/hour_glass/index.html) + +#### ⨠[Eleuther GPT-NeoX](https://nn.labml.ai/neox/index.html) +* [Generate on a 48GB GPU](https://nn.labml.ai/neox/samples/generate.html) +* [Finetune on two 48GB GPUs](https://nn.labml.ai/neox/samples/finetune.html) +* [LLM.int8()](https://nn.labml.ai/neox/utils/llm_int8.html) + +#### ⨠[Diffusion models](https://nn.labml.ai/diffusion/index.html) + +* [Denoising Diffusion Probabilistic Models (DDPM)](https://nn.labml.ai/diffusion/ddpm/index.html) +* [Denoising Diffusion Implicit Models (DDIM)](https://nn.labml.ai/diffusion/stable_diffusion/sampler/ddim.html) +* [Latent Diffusion Models](https://nn.labml.ai/diffusion/stable_diffusion/latent_diffusion.html) +* [Stable Diffusion](https://nn.labml.ai/diffusion/stable_diffusion/index.html) + +#### ⨠[Generative Adversarial Networks](https://nn.labml.ai/gan/index.html) +* [Original GAN](https://nn.labml.ai/gan/original/index.html) +* [GAN with deep convolutional network](https://nn.labml.ai/gan/dcgan/index.html) +* [Cycle GAN](https://nn.labml.ai/gan/cycle_gan/index.html) +* [Wasserstein GAN](https://nn.labml.ai/gan/wasserstein/index.html) +* [Wasserstein GAN with Gradient Penalty](https://nn.labml.ai/gan/wasserstein/gradient_penalty/index.html) +* [StyleGAN 2](https://nn.labml.ai/gan/stylegan/index.html) + +#### ⨠[Recurrent Highway Networks](https://nn.labml.ai/recurrent_highway_networks/index.html) + +#### ⨠[LSTM](https://nn.labml.ai/lstm/index.html) + +#### ⨠[HyperNetworks - HyperLSTM](https://nn.labml.ai/hypernetworks/hyper_lstm.html) + +#### ⨠[ResNet](https://nn.labml.ai/resnet/index.html) + +#### ⨠[ConvMixer](https://nn.labml.ai/conv_mixer/index.html) + +#### ⨠[Capsule Networks](https://nn.labml.ai/capsule_networks/index.html) + +#### ⨠[U-Net](https://nn.labml.ai/unet/index.html) + +#### ⨠[Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html) + +#### ⨠Graph Neural Networks + +* [Graph Attention Networks (GAT)](https://nn.labml.ai/graphs/gat/index.html) +* [Graph Attention Networks v2 (GATv2)](https://nn.labml.ai/graphs/gatv2/index.html) + +#### ⨠[Counterfactual Regret Minimization (CFR)](https://nn.labml.ai/cfr/index.html) + +Solving games with incomplete information such as poker with CFR. + +* [Kuhn Poker](https://nn.labml.ai/cfr/kuhn/index.html) + +#### ⨠[Reinforcement Learning](https://nn.labml.ai/rl/index.html) +* [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with + [Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html) +* [Deep Q Networks](https://nn.labml.ai/rl/dqn/index.html) with + with [Dueling Network](https://nn.labml.ai/rl/dqn/model.html), + [Prioritized Replay](https://nn.labml.ai/rl/dqn/replay_buffer.html) + and Double Q Network. + +#### ⨠[Optimizers](https://nn.labml.ai/optimizers/index.html) +* [Adam](https://nn.labml.ai/optimizers/adam.html) +* [AMSGrad](https://nn.labml.ai/optimizers/amsgrad.html) +* [Adam Optimizer with warmup](https://nn.labml.ai/optimizers/adam_warmup.html) +* [Noam Optimizer](https://nn.labml.ai/optimizers/noam.html) +* [Rectified Adam Optimizer](https://nn.labml.ai/optimizers/radam.html) +* [AdaBelief Optimizer](https://nn.labml.ai/optimizers/ada_belief.html) + +#### ⨠[Normalization Layers](https://nn.labml.ai/normalization/index.html) +* [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html) +* [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html) +* [Instance Normalization](https://nn.labml.ai/normalization/instance_norm/index.html) +* [Group Normalization](https://nn.labml.ai/normalization/group_norm/index.html) +* [Weight Standardization](https://nn.labml.ai/normalization/weight_standardization/index.html) +* [Batch-Channel Normalization](https://nn.labml.ai/normalization/batch_channel_norm/index.html) +* [DeepNorm](https://nn.labml.ai/normalization/deep_norm/index.html) + +#### ⨠[Distillation](https://nn.labml.ai/distillation/index.html) + +#### ⨠[Adaptive Computation](https://nn.labml.ai/adaptive_computation/index.html) + +* [PonderNet](https://nn.labml.ai/adaptive_computation/ponder_net/index.html) + +#### ⨠[Uncertainty](https://nn.labml.ai/uncertainty/index.html) + +* [Evidential Deep Learning to Quantify Classification Uncertainty](https://nn.labml.ai/uncertainty/evidence/index.html) + +#### ⨠[Activations](https://nn.labml.ai/activations/index.html) + +* [Fuzzy Tiling Activations](https://nn.labml.ai/activations/fta/index.html) + +#### ⨠[Langauge Model Sampling Techniques](https://nn.labml.ai/sampling/index.html) +* [Greedy Sampling](https://nn.labml.ai/sampling/greedy.html) +* [Temperature Sampling](https://nn.labml.ai/sampling/temperature.html) +* [Top-k Sampling](https://nn.labml.ai/sampling/top_k.html) +* [Nucleus Sampling](https://nn.labml.ai/sampling/nucleus.html) + +#### ⨠[Scalable Training/Inference](https://nn.labml.ai/scaling/index.html) +* [Zero3 memory optimizations](https://nn.labml.ai/scaling/zero3/index.html) + +## Highlighted Research Paper PDFs + +* [FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2205.14135.pdf) +* [Autoregressive Search Engines: Generating Substrings as Document Identifiers](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.10628.pdf) +* [Training Compute-Optimal Large Language Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.15556.pdf) +* [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1910.02054.pdf) +* [PaLM: Scaling Language Modeling with Pathways](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.02311.pdf) +* [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/dall-e-2.pdf) +* [STaR: Self-Taught Reasoner Bootstrapping Reasoning With Reasoning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.14465.pdf) +* [Improving language models by retrieving from trillions of tokens](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2112.04426.pdf) +* [NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2003.08934.pdf) +* [Attention Is All You Need](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1706.03762.pdf) +* [Denoising Diffusion Probabilistic Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2006.11239.pdf) +* [Primer: Searching for Efficient Transformers for Language Modeling](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.08668.pdf) +* [On First-Order Meta-Learning Algorithms](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1803.02999.pdf) +* [Learning Transferable Visual Models From Natural Language Supervision](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2103.00020.pdf) +* [The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.02869.pdf) +* [Meta-Gradient Reinforcement Learning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1805.09801.pdf) +* [ETA Prediction with Graph Neural Networks in Google Maps](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/google_maps_eta.pdf) +* [PonderNet: Learning to Ponder](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/ponder_net.pdf) +* [Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/muzero.pdf) +* [GANs Nâ Roses: Stable, Controllable, Diverse Image to Image Translation (works for videos too!)](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/gans_n_roses.pdf) +* [An Image is Worth 16X16 Word: Transformers for Image Recognition at Scale](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/vit.pdf) +* [Deep Residual Learning for Image Recognition](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/resnet.pdf) +* [Distilling the Knowledge in a Neural Network](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/distillation.pdf) + +### Installation + +```bash +pip install labml-nn +``` + +### Citing + +If you use this for academic research, please cite it using the following BibTeX entry. + +```bibtex +@misc{labml, + author = {Varuna Jayasiri, Nipun Wijerathne}, + title = {labml.ai Annotated Paper Implementations}, + year = {2020}, + url = {https://nn.labml.ai/}, +} +``` + +### Other Projects + +#### [đ Trending Research Papers](https://papers.labml.ai/) + +This shows the most popular research papers on social media. It also aggregates links to useful resources like paper explanations videos and discussions. + + +#### [đ§Ş labml.ai/labml](https://github.com/labmlai/labml) + +This is a library that let's you monitor deep learning model training and hardware usage from your mobile phone. It also comes with a bunch of other tools to help write deep learning code efficiently. + + + + + +%package -n python3-labml-nn +Summary: đ§âđŤ Implementations/tutorials of deep learning papers with side-by-side notes đ; including transformers (original, xl, switch, feedback, vit), optimizers (adam, radam, adabelief), gans(dcgan, cyclegan, stylegan2), đŽ reinforcement learning (ppo, dqn), capsnet, distillation, diffusion, etc. đ§ +Provides: python-labml-nn +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-labml-nn +[](https://twitter.com/labmlai) +[](https://github.com/sponsors/labmlai) + +# [labml.ai Deep Learning Paper Implementations](https://nn.labml.ai/index.html) + +This is a collection of simple PyTorch implementations of +neural networks and related algorithms. +These implementations are documented with explanations, + +[The website](https://nn.labml.ai/index.html) +renders these as side-by-side formatted notes. +We believe these would help you understand these algorithms better. + + + +We are actively maintaining this repo and adding new +implementations almost weekly. +[](https://twitter.com/labmlai) for updates. + +## Paper Implementations + +#### ⨠[Transformers](https://nn.labml.ai/transformers/index.html) + +* [Multi-headed attention](https://nn.labml.ai/transformers/mha.html) +* [Transformer building blocks](https://nn.labml.ai/transformers/models.html) +* [Transformer XL](https://nn.labml.ai/transformers/xl/index.html) + * [Relative multi-headed attention](https://nn.labml.ai/transformers/xl/relative_mha.html) +* [Rotary Positional Embeddings](https://nn.labml.ai/transformers/rope/index.html) +* [Attention with Linear Biases (ALiBi)](https://nn.labml.ai/transformers/alibi/index.html) +* [RETRO](https://nn.labml.ai/transformers/retro/index.html) +* [Compressive Transformer](https://nn.labml.ai/transformers/compressive/index.html) +* [GPT Architecture](https://nn.labml.ai/transformers/gpt/index.html) +* [GLU Variants](https://nn.labml.ai/transformers/glu_variants/simple.html) +* [kNN-LM: Generalization through Memorization](https://nn.labml.ai/transformers/knn) +* [Feedback Transformer](https://nn.labml.ai/transformers/feedback/index.html) +* [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html) +* [Fast Weights Transformer](https://nn.labml.ai/transformers/fast_weights/index.html) +* [FNet](https://nn.labml.ai/transformers/fnet/index.html) +* [Attention Free Transformer](https://nn.labml.ai/transformers/aft/index.html) +* [Masked Language Model](https://nn.labml.ai/transformers/mlm/index.html) +* [MLP-Mixer: An all-MLP Architecture for Vision](https://nn.labml.ai/transformers/mlp_mixer/index.html) +* [Pay Attention to MLPs (gMLP)](https://nn.labml.ai/transformers/gmlp/index.html) +* [Vision Transformer (ViT)](https://nn.labml.ai/transformers/vit/index.html) +* [Primer EZ](https://nn.labml.ai/transformers/primer_ez/index.html) +* [Hourglass](https://nn.labml.ai/transformers/hour_glass/index.html) + +#### ⨠[Eleuther GPT-NeoX](https://nn.labml.ai/neox/index.html) +* [Generate on a 48GB GPU](https://nn.labml.ai/neox/samples/generate.html) +* [Finetune on two 48GB GPUs](https://nn.labml.ai/neox/samples/finetune.html) +* [LLM.int8()](https://nn.labml.ai/neox/utils/llm_int8.html) + +#### ⨠[Diffusion models](https://nn.labml.ai/diffusion/index.html) + +* [Denoising Diffusion Probabilistic Models (DDPM)](https://nn.labml.ai/diffusion/ddpm/index.html) +* [Denoising Diffusion Implicit Models (DDIM)](https://nn.labml.ai/diffusion/stable_diffusion/sampler/ddim.html) +* [Latent Diffusion Models](https://nn.labml.ai/diffusion/stable_diffusion/latent_diffusion.html) +* [Stable Diffusion](https://nn.labml.ai/diffusion/stable_diffusion/index.html) + +#### ⨠[Generative Adversarial Networks](https://nn.labml.ai/gan/index.html) +* [Original GAN](https://nn.labml.ai/gan/original/index.html) +* [GAN with deep convolutional network](https://nn.labml.ai/gan/dcgan/index.html) +* [Cycle GAN](https://nn.labml.ai/gan/cycle_gan/index.html) +* [Wasserstein GAN](https://nn.labml.ai/gan/wasserstein/index.html) +* [Wasserstein GAN with Gradient Penalty](https://nn.labml.ai/gan/wasserstein/gradient_penalty/index.html) +* [StyleGAN 2](https://nn.labml.ai/gan/stylegan/index.html) + +#### ⨠[Recurrent Highway Networks](https://nn.labml.ai/recurrent_highway_networks/index.html) + +#### ⨠[LSTM](https://nn.labml.ai/lstm/index.html) + +#### ⨠[HyperNetworks - HyperLSTM](https://nn.labml.ai/hypernetworks/hyper_lstm.html) + +#### ⨠[ResNet](https://nn.labml.ai/resnet/index.html) + +#### ⨠[ConvMixer](https://nn.labml.ai/conv_mixer/index.html) + +#### ⨠[Capsule Networks](https://nn.labml.ai/capsule_networks/index.html) + +#### ⨠[U-Net](https://nn.labml.ai/unet/index.html) + +#### ⨠[Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html) + +#### ⨠Graph Neural Networks + +* [Graph Attention Networks (GAT)](https://nn.labml.ai/graphs/gat/index.html) +* [Graph Attention Networks v2 (GATv2)](https://nn.labml.ai/graphs/gatv2/index.html) + +#### ⨠[Counterfactual Regret Minimization (CFR)](https://nn.labml.ai/cfr/index.html) + +Solving games with incomplete information such as poker with CFR. + +* [Kuhn Poker](https://nn.labml.ai/cfr/kuhn/index.html) + +#### ⨠[Reinforcement Learning](https://nn.labml.ai/rl/index.html) +* [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with + [Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html) +* [Deep Q Networks](https://nn.labml.ai/rl/dqn/index.html) with + with [Dueling Network](https://nn.labml.ai/rl/dqn/model.html), + [Prioritized Replay](https://nn.labml.ai/rl/dqn/replay_buffer.html) + and Double Q Network. + +#### ⨠[Optimizers](https://nn.labml.ai/optimizers/index.html) +* [Adam](https://nn.labml.ai/optimizers/adam.html) +* [AMSGrad](https://nn.labml.ai/optimizers/amsgrad.html) +* [Adam Optimizer with warmup](https://nn.labml.ai/optimizers/adam_warmup.html) +* [Noam Optimizer](https://nn.labml.ai/optimizers/noam.html) +* [Rectified Adam Optimizer](https://nn.labml.ai/optimizers/radam.html) +* [AdaBelief Optimizer](https://nn.labml.ai/optimizers/ada_belief.html) + +#### ⨠[Normalization Layers](https://nn.labml.ai/normalization/index.html) +* [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html) +* [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html) +* [Instance Normalization](https://nn.labml.ai/normalization/instance_norm/index.html) +* [Group Normalization](https://nn.labml.ai/normalization/group_norm/index.html) +* [Weight Standardization](https://nn.labml.ai/normalization/weight_standardization/index.html) +* [Batch-Channel Normalization](https://nn.labml.ai/normalization/batch_channel_norm/index.html) +* [DeepNorm](https://nn.labml.ai/normalization/deep_norm/index.html) + +#### ⨠[Distillation](https://nn.labml.ai/distillation/index.html) + +#### ⨠[Adaptive Computation](https://nn.labml.ai/adaptive_computation/index.html) + +* [PonderNet](https://nn.labml.ai/adaptive_computation/ponder_net/index.html) + +#### ⨠[Uncertainty](https://nn.labml.ai/uncertainty/index.html) + +* [Evidential Deep Learning to Quantify Classification Uncertainty](https://nn.labml.ai/uncertainty/evidence/index.html) + +#### ⨠[Activations](https://nn.labml.ai/activations/index.html) + +* [Fuzzy Tiling Activations](https://nn.labml.ai/activations/fta/index.html) + +#### ⨠[Langauge Model Sampling Techniques](https://nn.labml.ai/sampling/index.html) +* [Greedy Sampling](https://nn.labml.ai/sampling/greedy.html) +* [Temperature Sampling](https://nn.labml.ai/sampling/temperature.html) +* [Top-k Sampling](https://nn.labml.ai/sampling/top_k.html) +* [Nucleus Sampling](https://nn.labml.ai/sampling/nucleus.html) + +#### ⨠[Scalable Training/Inference](https://nn.labml.ai/scaling/index.html) +* [Zero3 memory optimizations](https://nn.labml.ai/scaling/zero3/index.html) + +## Highlighted Research Paper PDFs + +* [FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2205.14135.pdf) +* [Autoregressive Search Engines: Generating Substrings as Document Identifiers](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.10628.pdf) +* [Training Compute-Optimal Large Language Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.15556.pdf) +* [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1910.02054.pdf) +* [PaLM: Scaling Language Modeling with Pathways](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.02311.pdf) +* [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/dall-e-2.pdf) +* [STaR: Self-Taught Reasoner Bootstrapping Reasoning With Reasoning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.14465.pdf) +* [Improving language models by retrieving from trillions of tokens](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2112.04426.pdf) +* [NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2003.08934.pdf) +* [Attention Is All You Need](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1706.03762.pdf) +* [Denoising Diffusion Probabilistic Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2006.11239.pdf) +* [Primer: Searching for Efficient Transformers for Language Modeling](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.08668.pdf) +* [On First-Order Meta-Learning Algorithms](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1803.02999.pdf) +* [Learning Transferable Visual Models From Natural Language Supervision](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2103.00020.pdf) +* [The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.02869.pdf) +* [Meta-Gradient Reinforcement Learning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1805.09801.pdf) +* [ETA Prediction with Graph Neural Networks in Google Maps](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/google_maps_eta.pdf) +* [PonderNet: Learning to Ponder](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/ponder_net.pdf) +* [Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/muzero.pdf) +* [GANs Nâ Roses: Stable, Controllable, Diverse Image to Image Translation (works for videos too!)](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/gans_n_roses.pdf) +* [An Image is Worth 16X16 Word: Transformers for Image Recognition at Scale](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/vit.pdf) +* [Deep Residual Learning for Image Recognition](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/resnet.pdf) +* [Distilling the Knowledge in a Neural Network](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/distillation.pdf) + +### Installation + +```bash +pip install labml-nn +``` + +### Citing + +If you use this for academic research, please cite it using the following BibTeX entry. + +```bibtex +@misc{labml, + author = {Varuna Jayasiri, Nipun Wijerathne}, + title = {labml.ai Annotated Paper Implementations}, + year = {2020}, + url = {https://nn.labml.ai/}, +} +``` + +### Other Projects + +#### [đ Trending Research Papers](https://papers.labml.ai/) + +This shows the most popular research papers on social media. It also aggregates links to useful resources like paper explanations videos and discussions. + + +#### [đ§Ş labml.ai/labml](https://github.com/labmlai/labml) + +This is a library that let's you monitor deep learning model training and hardware usage from your mobile phone. It also comes with a bunch of other tools to help write deep learning code efficiently. + + + + + +%package help +Summary: Development documents and examples for labml-nn +Provides: python3-labml-nn-doc +%description help +[](https://twitter.com/labmlai) +[](https://github.com/sponsors/labmlai) + +# [labml.ai Deep Learning Paper Implementations](https://nn.labml.ai/index.html) + +This is a collection of simple PyTorch implementations of +neural networks and related algorithms. +These implementations are documented with explanations, + +[The website](https://nn.labml.ai/index.html) +renders these as side-by-side formatted notes. +We believe these would help you understand these algorithms better. + + + +We are actively maintaining this repo and adding new +implementations almost weekly. +[](https://twitter.com/labmlai) for updates. + +## Paper Implementations + +#### ⨠[Transformers](https://nn.labml.ai/transformers/index.html) + +* [Multi-headed attention](https://nn.labml.ai/transformers/mha.html) +* [Transformer building blocks](https://nn.labml.ai/transformers/models.html) +* [Transformer XL](https://nn.labml.ai/transformers/xl/index.html) + * [Relative multi-headed attention](https://nn.labml.ai/transformers/xl/relative_mha.html) +* [Rotary Positional Embeddings](https://nn.labml.ai/transformers/rope/index.html) +* [Attention with Linear Biases (ALiBi)](https://nn.labml.ai/transformers/alibi/index.html) +* [RETRO](https://nn.labml.ai/transformers/retro/index.html) +* [Compressive Transformer](https://nn.labml.ai/transformers/compressive/index.html) +* [GPT Architecture](https://nn.labml.ai/transformers/gpt/index.html) +* [GLU Variants](https://nn.labml.ai/transformers/glu_variants/simple.html) +* [kNN-LM: Generalization through Memorization](https://nn.labml.ai/transformers/knn) +* [Feedback Transformer](https://nn.labml.ai/transformers/feedback/index.html) +* [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html) +* [Fast Weights Transformer](https://nn.labml.ai/transformers/fast_weights/index.html) +* [FNet](https://nn.labml.ai/transformers/fnet/index.html) +* [Attention Free Transformer](https://nn.labml.ai/transformers/aft/index.html) +* [Masked Language Model](https://nn.labml.ai/transformers/mlm/index.html) +* [MLP-Mixer: An all-MLP Architecture for Vision](https://nn.labml.ai/transformers/mlp_mixer/index.html) +* [Pay Attention to MLPs (gMLP)](https://nn.labml.ai/transformers/gmlp/index.html) +* [Vision Transformer (ViT)](https://nn.labml.ai/transformers/vit/index.html) +* [Primer EZ](https://nn.labml.ai/transformers/primer_ez/index.html) +* [Hourglass](https://nn.labml.ai/transformers/hour_glass/index.html) + +#### ⨠[Eleuther GPT-NeoX](https://nn.labml.ai/neox/index.html) +* [Generate on a 48GB GPU](https://nn.labml.ai/neox/samples/generate.html) +* [Finetune on two 48GB GPUs](https://nn.labml.ai/neox/samples/finetune.html) +* [LLM.int8()](https://nn.labml.ai/neox/utils/llm_int8.html) + +#### ⨠[Diffusion models](https://nn.labml.ai/diffusion/index.html) + +* [Denoising Diffusion Probabilistic Models (DDPM)](https://nn.labml.ai/diffusion/ddpm/index.html) +* [Denoising Diffusion Implicit Models (DDIM)](https://nn.labml.ai/diffusion/stable_diffusion/sampler/ddim.html) +* [Latent Diffusion Models](https://nn.labml.ai/diffusion/stable_diffusion/latent_diffusion.html) +* [Stable Diffusion](https://nn.labml.ai/diffusion/stable_diffusion/index.html) + +#### ⨠[Generative Adversarial Networks](https://nn.labml.ai/gan/index.html) +* [Original GAN](https://nn.labml.ai/gan/original/index.html) +* [GAN with deep convolutional network](https://nn.labml.ai/gan/dcgan/index.html) +* [Cycle GAN](https://nn.labml.ai/gan/cycle_gan/index.html) +* [Wasserstein GAN](https://nn.labml.ai/gan/wasserstein/index.html) +* [Wasserstein GAN with Gradient Penalty](https://nn.labml.ai/gan/wasserstein/gradient_penalty/index.html) +* [StyleGAN 2](https://nn.labml.ai/gan/stylegan/index.html) + +#### ⨠[Recurrent Highway Networks](https://nn.labml.ai/recurrent_highway_networks/index.html) + +#### ⨠[LSTM](https://nn.labml.ai/lstm/index.html) + +#### ⨠[HyperNetworks - HyperLSTM](https://nn.labml.ai/hypernetworks/hyper_lstm.html) + +#### ⨠[ResNet](https://nn.labml.ai/resnet/index.html) + +#### ⨠[ConvMixer](https://nn.labml.ai/conv_mixer/index.html) + +#### ⨠[Capsule Networks](https://nn.labml.ai/capsule_networks/index.html) + +#### ⨠[U-Net](https://nn.labml.ai/unet/index.html) + +#### ⨠[Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html) + +#### ⨠Graph Neural Networks + +* [Graph Attention Networks (GAT)](https://nn.labml.ai/graphs/gat/index.html) +* [Graph Attention Networks v2 (GATv2)](https://nn.labml.ai/graphs/gatv2/index.html) + +#### ⨠[Counterfactual Regret Minimization (CFR)](https://nn.labml.ai/cfr/index.html) + +Solving games with incomplete information such as poker with CFR. + +* [Kuhn Poker](https://nn.labml.ai/cfr/kuhn/index.html) + +#### ⨠[Reinforcement Learning](https://nn.labml.ai/rl/index.html) +* [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with + [Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html) +* [Deep Q Networks](https://nn.labml.ai/rl/dqn/index.html) with + with [Dueling Network](https://nn.labml.ai/rl/dqn/model.html), + [Prioritized Replay](https://nn.labml.ai/rl/dqn/replay_buffer.html) + and Double Q Network. + +#### ⨠[Optimizers](https://nn.labml.ai/optimizers/index.html) +* [Adam](https://nn.labml.ai/optimizers/adam.html) +* [AMSGrad](https://nn.labml.ai/optimizers/amsgrad.html) +* [Adam Optimizer with warmup](https://nn.labml.ai/optimizers/adam_warmup.html) +* [Noam Optimizer](https://nn.labml.ai/optimizers/noam.html) +* [Rectified Adam Optimizer](https://nn.labml.ai/optimizers/radam.html) +* [AdaBelief Optimizer](https://nn.labml.ai/optimizers/ada_belief.html) + +#### ⨠[Normalization Layers](https://nn.labml.ai/normalization/index.html) +* [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html) +* [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html) +* [Instance Normalization](https://nn.labml.ai/normalization/instance_norm/index.html) +* [Group Normalization](https://nn.labml.ai/normalization/group_norm/index.html) +* [Weight Standardization](https://nn.labml.ai/normalization/weight_standardization/index.html) +* [Batch-Channel Normalization](https://nn.labml.ai/normalization/batch_channel_norm/index.html) +* [DeepNorm](https://nn.labml.ai/normalization/deep_norm/index.html) + +#### ⨠[Distillation](https://nn.labml.ai/distillation/index.html) + +#### ⨠[Adaptive Computation](https://nn.labml.ai/adaptive_computation/index.html) + +* [PonderNet](https://nn.labml.ai/adaptive_computation/ponder_net/index.html) + +#### ⨠[Uncertainty](https://nn.labml.ai/uncertainty/index.html) + +* [Evidential Deep Learning to Quantify Classification Uncertainty](https://nn.labml.ai/uncertainty/evidence/index.html) + +#### ⨠[Activations](https://nn.labml.ai/activations/index.html) + +* [Fuzzy Tiling Activations](https://nn.labml.ai/activations/fta/index.html) + +#### ⨠[Langauge Model Sampling Techniques](https://nn.labml.ai/sampling/index.html) +* [Greedy Sampling](https://nn.labml.ai/sampling/greedy.html) +* [Temperature Sampling](https://nn.labml.ai/sampling/temperature.html) +* [Top-k Sampling](https://nn.labml.ai/sampling/top_k.html) +* [Nucleus Sampling](https://nn.labml.ai/sampling/nucleus.html) + +#### ⨠[Scalable Training/Inference](https://nn.labml.ai/scaling/index.html) +* [Zero3 memory optimizations](https://nn.labml.ai/scaling/zero3/index.html) + +## Highlighted Research Paper PDFs + +* [FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2205.14135.pdf) +* [Autoregressive Search Engines: Generating Substrings as Document Identifiers](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.10628.pdf) +* [Training Compute-Optimal Large Language Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.15556.pdf) +* [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1910.02054.pdf) +* [PaLM: Scaling Language Modeling with Pathways](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.02311.pdf) +* [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/dall-e-2.pdf) +* [STaR: Self-Taught Reasoner Bootstrapping Reasoning With Reasoning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.14465.pdf) +* [Improving language models by retrieving from trillions of tokens](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2112.04426.pdf) +* [NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2003.08934.pdf) +* [Attention Is All You Need](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1706.03762.pdf) +* [Denoising Diffusion Probabilistic Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2006.11239.pdf) +* [Primer: Searching for Efficient Transformers for Language Modeling](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.08668.pdf) +* [On First-Order Meta-Learning Algorithms](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1803.02999.pdf) +* [Learning Transferable Visual Models From Natural Language Supervision](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2103.00020.pdf) +* [The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.02869.pdf) +* [Meta-Gradient Reinforcement Learning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1805.09801.pdf) +* [ETA Prediction with Graph Neural Networks in Google Maps](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/google_maps_eta.pdf) +* [PonderNet: Learning to Ponder](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/ponder_net.pdf) +* [Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/muzero.pdf) +* [GANs Nâ Roses: Stable, Controllable, Diverse Image to Image Translation (works for videos too!)](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/gans_n_roses.pdf) +* [An Image is Worth 16X16 Word: Transformers for Image Recognition at Scale](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/vit.pdf) +* [Deep Residual Learning for Image Recognition](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/resnet.pdf) +* [Distilling the Knowledge in a Neural Network](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/distillation.pdf) + +### Installation + +```bash +pip install labml-nn +``` + +### Citing + +If you use this for academic research, please cite it using the following BibTeX entry. + +```bibtex +@misc{labml, + author = {Varuna Jayasiri, Nipun Wijerathne}, + title = {labml.ai Annotated Paper Implementations}, + year = {2020}, + url = {https://nn.labml.ai/}, +} +``` + +### Other Projects + +#### [đ Trending Research Papers](https://papers.labml.ai/) + +This shows the most popular research papers on social media. It also aggregates links to useful resources like paper explanations videos and discussions. + + +#### [đ§Ş labml.ai/labml](https://github.com/labmlai/labml) + +This is a library that let's you monitor deep learning model training and hardware usage from your mobile phone. It also comes with a bunch of other tools to help write deep learning code efficiently. + + + + + +%prep +%autosetup -n labml-nn-0.4.133 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-labml-nn -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.133-1 +- Package Spec generated @@ -0,0 +1 @@ +e1124ae4c482e61124bedd25287abe7f labml-nn-0.4.133.tar.gz |