summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-31 06:56:30 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-31 06:56:30 +0000
commitbcc4f85e519ad95b8aad557f64b39e9ea998a355 (patch)
tree37690f0e3096bf291c0b97adf2147cdac9d777f2
parent8bd5e6cd1572777f67543eedd1339fb45ef1a278 (diff)
automatic import of python-mealpy
-rw-r--r--.gitignore1
-rw-r--r--python-mealpy.spec2566
-rw-r--r--sources1
3 files changed, 2568 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..73c2e14 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/mealpy-2.5.3.tar.gz
diff --git a/python-mealpy.spec b/python-mealpy.spec
new file mode 100644
index 0000000..fe85f3c
--- /dev/null
+++ b/python-mealpy.spec
@@ -0,0 +1,2566 @@
+%global _empty_manifest_terminate_build 0
+Name: python-mealpy
+Version: 2.5.3
+Release: 1
+Summary: MEALPY: An Open-source Library for Latest Meta-heuristic Algorithms in Python
+License: GPLv3
+URL: https://github.com/thieu1995/mealpy
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b0/3c/9cace18c6f3911344317fcc16a37752c3829643a0434a71678da567e2042/mealpy-2.5.3.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-matplotlib
+Requires: python3-scipy
+Requires: python3-pandas
+Requires: python3-opfunu
+Requires: python3-pytest
+Requires: python3-twine
+
+%description
+[![GitHub release](https://img.shields.io/badge/release-2.5.3-yellow.svg)](https://github.com/thieu1995/mealpy/releases)
+[![Wheel](https://img.shields.io/pypi/wheel/gensim.svg)](https://pypi.python.org/pypi/mealpy)
+[![PyPI version](https://badge.fury.io/py/mealpy.svg)](https://badge.fury.io/py/mealpy)
+![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mealpy.svg)
+![PyPI - Status](https://img.shields.io/pypi/status/mealpy.svg)
+![PyPI - Downloads](https://img.shields.io/pypi/dm/mealpy.svg)
+[![Downloads](https://pepy.tech/badge/mealpy)](https://pepy.tech/project/mealpy)
+[![Tests & Publishes to PyPI](https://github.com/thieu1995/mealpy/actions/workflows/publish-package.yaml/badge.svg)](https://github.com/thieu1995/mealpy/actions/workflows/publish-package.yaml)
+![GitHub Release Date](https://img.shields.io/github/release-date/thieu1995/mealpy.svg)
+[![Documentation Status](https://readthedocs.org/projects/mealpy/badge/?version=latest)](https://mealpy.readthedocs.io/en/latest/?badge=latest)
+[![Chat](https://img.shields.io/badge/Chat-on%20Telegram-blue)](https://t.me/+fRVCJGuGJg1mNDg1)
+[![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/thieu1995/mealpy.svg)](http://isitmaintained.com/project/thieu1995/mealpy "Average time to resolve an issue")
+[![Percentage of issues still open](http://isitmaintained.com/badge/open/thieu1995/mealpy.svg)](http://isitmaintained.com/project/thieu1995/mealpy "Percentage of issues still open")
+![GitHub contributors](https://img.shields.io/github/contributors/thieu1995/mealpy.svg)
+[![GitTutorial](https://img.shields.io/badge/PR-Welcome-%23FF8300.svg?)](https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3711948.svg)](https://doi.org/10.5281/zenodo.3711948)
+[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
+MEALPY is the largest python library for most of the cutting-edge nature-inspired meta-heuristic algorithms (population-based). Population meta-heuristic algorithms (PMA) are the most popular algorithms in the field of
+approximate optimization.
+* **Free software:** GNU General Public License (GPL) V3 license
+* **Total algorithms**: 174 (102 original, 45 official variants, 27 developed variants)
+* **Documentation:** https://mealpy.readthedocs.io/en/latest/
+* **Python versions:** 3.7.x, 3.8.x, 3.9.x, 3.10.x, 3.11.x
+* **Dependencies:** numpy, scipy, pandas, matplotlib
+# Goals
+Our goals are to implement all of the classical as well as the state-of-the-art nature-inspired algorithms, create a simple interface that helps researchers access optimization algorithms as quickly as possible, and share knowledge of the optimization field with everyone without a fee. What you can do with mealpy:
+- Analyse parameters of meta-heuristic algorithms.
+- Perform Qualitative and Quantitative Analysis of algorithms.
+- Analyse rate of convergence of algorithms.
+- Test and Analyse the scalability and the robustness of algorithms.
+- Save results in various formats (csv, json, pickle, png, pdf, jpeg)
+- Export and import models can also be done with Mealpy.
+# Installation
+### Install with pip
+Install the [current PyPI release](https://pypi.python.org/pypi/mealpy):
+```sh
+$ pip install mealpy==2.5.3
+```
+### Install from source
+In case you want to install directly from the source code, use:
+```sh
+$ git clone https://github.com/thieu1995/mealpy.git
+$ cd mealpy
+$ python setup.py install
+```
+# Usage
+After installation, you can import Mealpy as any other Python module:
+```sh
+$ python
+>>> import mealpy
+>>> mealpy.__version__
+```
+Let's go through a basic and advanced example.
+## Examples
+### Simple Benchmark Function
+```python
+from mealpy.bio_based import SMA
+import numpy as np
+def fitness_function(solution):
+ return np.sum(solution**2)
+problem = {
+ "fit_func": fitness_function,
+ "lb": [-100, ] * 30,
+ "ub": [100, ] * 30,
+ "minmax": "min",
+ "log_to": None,
+ "save_population": False,
+}
+## Run the algorithm
+model = SMA.BaseSMA(epoch=100, pop_size=50, pr=0.03)
+best_position, best_fitness = model.solve(problem)
+print(f"Best solution: {best_position}, Best fitness: {best_fitness}")
+```
+### Constrained Benchmark Function
+* [The Constrained Benchmark Function](https://github.com/thieu1995/mealpy/tree/master/examples/applications/run_constraint_functions.py)
+### Multi-objective Benchmark Function
+* [Multi-objective benchmark functions](https://github.com/thieu1995/mealpy/tree/master/examples/applications/run_multi_objective_functions.py)
+### Custom Problem
+For our custom problem, we can create a class and inherit from the Problem class, named the child class the
+'Squared' class. In the initialization method of the 'Squared' class, we have to set the *lb*, *ub*, and *minmax*
+of the problem (lb: a list of lower bound values, ub: a list of upper bound values, and minmax: a string specifying
+whether the problem is a 'min' or 'max' problem).
+Afterwards, we have to override the abstract method 'fit_func()', which takes a parameter 'solution' (the solution
+to be evaluated) and returns the function value. The resulting code should look something like the code snippet
+below. 'Name' is an additional parameter we want to include in this class, and you can include any other additional
+parameters you need.
+```python
+import numpy as np
+from mealpy.bio_based import BBO
+from mealpy.utils.problem import Problem
+# Our custom problem class
+class Squared(Problem):
+ def __init__(self, lb=(-5, -5, -5, -5, -5, -5), ub=(5, 5, 5, 5, 5, 5), minmax="min", name="Squared", **kwargs):
+ super().__init__(lb, ub, minmax, **kwargs)
+ self.name = name
+ def fit_func(self, solution):
+ return np.sum(solution ** 2)
+```
+Now, we define an algorithm, and pass an instance of our *Squared* class as the problem argument.
+```python
+problem = Squared(lb=[-10] * 20, ub=[10] * 20, minmax="min")
+model = BBO.BaseBBO(epoch=10, pop_size=50)
+best_position, best_fitness = model.solve(problem)
+print(best_position)
+print(best_fitness)
+print(model.get_parameters())
+print(model.get_name())
+print(model.get_attributes()["solution"])
+print(model.problem.get_name())
+print(model.problem.n_dims)
+```
+### Tuner class (GridSearchCV/ParameterSearch, Hyper-parameter tuning)
+We build a dedicated class, Tuner, that can help you tune your algorithm's parameters.
+```python
+import numpy as np
+from mealpy.bio_based import BBO
+from mealpy.tuner import Tuner # Remember this
+def fitness(solution):
+ return np.sum(solution**2)
+problem = {
+ "lb": [-100, ]*50,
+ "ub": [100, ]*50,
+ "minmax": "min",
+ "fit_func": fitness,
+ "name": "Squared Problem",
+ "log_to": None,
+}
+paras_bbo_grid = {
+ "epoch": [100],
+ "pop_size": [50],
+ "elites": [2, 3, 4, 5],
+ "p_m": [0.01, 0.02, 0.05, 0.1, 0.15, 0.2]
+}
+term = {
+ "max_fe": 10000
+}
+if __name__ == "__main__":
+ model = BBO.BaseBBO()
+ tuner = Tuner(model, paras_bbo_grid)
+ tuner.execute(problem=problem, termination=term, n_trials=5, n_jobs=5, mode="thread", n_workers=4, verbose=True)
+ ## Solve this problem 5 times (n_trials) using 5 processes (n_jobs), each process will handle 1 trial.
+ ## The mode to run the solver is thread (mode), we will calculate the fitness of 4 solutions (n_workers) at the same time
+ print(tuner.best_score)
+ print(tuner.best_params)
+ print(tuner.best_algorithm)
+ print(tuner.best_algorithm.get_name())
+ ## Save results to csv file
+ tuner.export_results(save_path="history/tuning", save_as="csv")
+ ## Re-solve the best model on your problem
+ best_position, best_fitness = tuner.resolve()
+ print(best_position, best_fitness)
+ print(tuner.problem.get_name())
+```
+### Multitask class (Multitask solving)
+We also build a dedicated class, Multitask, that can help you run several scenarios. For example:
+1. Run 1 algorithm with 1 problem, and multiple trials
+2. Run 1 algorithm with multiple problems, and multiple trials
+3. Run multiple algorithms with 1 problem, and multiple trials
+4. Run multiple algorithms with multiple problems, and multiple trials
+```python
+#### Using multiple algorithm to solve multiple problems with multiple trials
+## Import libraries
+## For example, we want to solve F5, F10, F29 problem in CEC-2017
+from opfunu.cec_based.cec2017 import F52017, F102017, F292017
+from mealpy.bio_based import BBO
+from mealpy.evolutionary_based import DE
+from mealpy.multitask import Multitask # Remember this
+## You can define your own problems
+f1 = F52017(30, f_bias=0)
+f2 = F102017(30, f_bias=0)
+f3 = F292017(30, f_bias=0)
+p1 = {
+ "lb": f1.lb.tolist(),
+ "ub": f1.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f1.evaluate,
+ "name": "F5-CEC2017",
+ "log_to": None,
+}
+p2 = {
+ "lb": f2.lb.tolist(),
+ "ub": f2.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f2.evaluate,
+ "name": "F10-CEC2017",
+ "log_to": None,
+}
+p3 = {
+ "lb": f3.lb.tolist(),
+ "ub": f3.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f3.evaluate,
+ "name": "F29-CEC2017",
+ "log_to": None,
+}
+## Define models
+model1 = BBO.BaseBBO(epoch=10, pop_size=50)
+model2 = BBO.OriginalBBO(epoch=10, pop_size=50)
+model3 = DE.BaseDE(epoch=10, pop_size=50)
+## Define termination if needed
+term = {
+ "max_fe": 10000
+}
+## Define and run Multitask
+if __name__ == "__main__":
+ multitask = Multitask(algorithms=(model1, model2, model3), problems=(p1, p2, p3), terminations=(term, ), modes=("thread", ))
+ # default modes = "single", default termination = epoch (as defined in problem dictionary)
+ multitask.execute(n_trials=5, n_jobs=5, save_path="history", save_as="csv", save_convergence=False, verbose=False)
+ ## Check the directory: history/, you will see list of .csv result files
+```
+For more usage examples please look at [examples](/examples) folder.
+More advanced examples can also be found in the [Mealpy-examples repository](https://github.com/thieu1995/mealpy_examples).
+### Get Visualize Figures
+* [Tutorials](/examples/utils/visualize/all_charts.py)
+<p align="center"><img src="https://thieu1995.github.io/post/2022-04/19-mealpy-tutorials/mealpy2.png" alt="MEALPY"/>
+</p>
+## Mealpy Application
+### Mealpy + Neural Network (Replace the Gradient Descent Optimizer)
+* Time-series Problem:
+ * Traditional MLP
+ code: [Link](https://github.com/thieu1995/mealpy/tree/master/examples/applications/keras/traditional-mlp-time-series.py)
+ * Hybrid code (Mealpy +
+ MLP): [Link](https://github.com/thieu1995/mealpy/tree/master/examples/applications/keras/mha-hybrid-mlp-time-series.py)
+* Classification Problem:
+ * Traditional MLP
+ code: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/traditional-mlp-classification.py)
+ * Hybrid code (Mealpy +
+ MLP): [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/mha-hybrid-mlp-classification.py)
+### Mealpy + Neural Network (Optimize Neural Network Hyper-parameter)
+Code: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/mha-hyper-parameter-mlp-time-series.py)
+### Other Applications
+* Solving Knapsack Problem (Discrete
+ problems): [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/discrete-problems/knapsack-problem.py)
+* Optimize SVM (SVC)
+ model: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/sklearn/svm_classification.py)
+* Optimize Linear Regression
+ Model: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/pytorch/linear_regression.py)
+* Travelling Salesman Problem: https://github.com/thieu1995/MHA-TSP
+* Feature selection problem: https://github.com/thieu1995/MHA-FS
+## Tutorial Videos
+All tutorial videos: [Link](https://mealpy.readthedocs.io/en/latest/pages/general/video_tutorials.html)
+All code examples: [Link](https://github.com/thieu1995/mealpy/tree/master/examples)
+All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages/visualization.html)
+### Get helps (questions, problems)
+* Official source code repo: https://github.com/thieu1995/mealpy
+* Official document: https://mealpy.readthedocs.io/
+* Download releases: https://pypi.org/project/mealpy/
+* Issue tracker: https://github.com/thieu1995/mealpy/issues
+* Notable changes log: https://github.com/thieu1995/mealpy/blob/master/ChangeLog.md
+* Examples with different meapy version: https://github.com/thieu1995/mealpy/blob/master/EXAMPLES.md
+* This project also related to our another projects which are "meta-heuristics" and "neural-network", check it here
+ * https://github.com/thieu1995/opfunu
+ * https://github.com/thieu1995/metaheuristics
+ * https://github.com/aiir-team
+**Want to have an instant assistant? Join our telegram community at [link](https://t.me/+fRVCJGuGJg1mNDg1)**
+We share lots of information, questions, and answers there. You will get more support and knowledge there.
+### Cite Us
+If you are using mealpy in your project, we would appreciate citations:
+```bibtex
+@article{van2023mealpy,
+ title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
+ author={Van Thieu, Nguyen and Mirjalili, Seyedali},
+ journal={Journal of Systems Architecture},
+ year={2023},
+ publisher={Elsevier}
+}
+@article{van2023groundwater,
+ title={Groundwater level modeling using Augmented Artificial Ecosystem Optimization},
+ author={Van Thieu, Nguyen and Barma, Surajit Deb and Van Lam, To and Kisi, Ozgur and Mahesha, Amai},
+ journal={Journal of Hydrology},
+ volume={617},
+ pages={129034},
+ year={2023},
+ publisher={Elsevier}
+}
+```
+# List of papers used MEALPY
+- Min, J., Oh, M., Kim, W., Seo, H., & Paek, J. (2022, October). Evaluation of Metaheuristic Algorithms for TAS Scheduling in Time-Sensitive Networking. In 2022 13th International Conference on Information and Communication Technology Convergence (ICTC) (pp. 809-812). IEEE.
+- Khozeimeh, F., Sharifrazi, D., Izadi, N. H., Joloudari, J. H., Shoeibi, A., Alizadehsani, R., ... & Islam, S. M. S. (2021). Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Scientific Reports, 11(1), 15343.
+- Rajesh, K., Jain, E., & Kotecha, P. (2022). A Multi-Objective approach to the Electric Vehicle Routing Problem. arXiv preprint arXiv:2208.12440.
+- Sánchez, A. J. H., & Upegui, F. R. (2022). Una herramienta para el diseño de redes MSMN de banda ancha en líneas de transmisión basada en algoritmos heurísticos de optimización comparados. Revista Ingeniería UC, 29(2), 106-123.
+- Khanmohammadi, M., Armaghani, D. J., & Sabri Sabri, M. M. (2022). Prediction and Optimization of Pile Bearing Capacity Considering Effects of Time. Mathematics, 10(19), 3563.
+- Kudela, J. (2023). The Evolutionary Computation Methods No One Should Use. arXiv preprint arXiv:2301.01984.
+- Vieira, M., Faia, R., Pinto, T., & Vale, Z. (2022, September). Schedule Peer-to-Peer Transactions of an Energy Community Using Particle Swarm. In 2022 18th International Conference on the European Energy Market (EEM) (pp. 1-6). IEEE.
+- Bui, X. N., Nguyen, H., Le, Q. T., & Le, T. N. Forecasting PM. MINING SCIENCE ANDTECHNOLOGY (Russia), 111.
+- Bui, X. N., Nguyen, H., Le, Q. T., & Le, T. N. (2022). Forecasting PM 2.5 emissions in open-pit minesusing a functional link neural network optimized by various optimization algorithms. Gornye nauki i tekhnologii= Mining Science and Technology (Russia), 7(2), 111-125.
+- Doğan, E., & Yörükeren, N. (2022). Enhancement of Transmission System Security with Archimedes Optimization Algorithm.
+- Ayub, N., Aurangzeb, K., Awais, M., & Ali, U. (2020, November). Electricity theft detection using CNN-GRU and manta ray foraging optimization algorithm. In 2020 IEEE 23Rd international multitopic conference (INMIC) (pp. 1-6). IEEE.
+- Pintilie, L., Nechita, M. T., Suditu, G. D., Dafinescu, V., & Drăgoi, E. N. (2022). Photo-decolorization of Eriochrome Black T: process optimization with Differential Evolution algorithm. In PASEW-22, MESSH-22 & CABES-22 April 19–21, 2022 Paris (France). Eminent Association of Pioneers.
+- LaTorre, A., Molina, D., Osaba, E., Poyatos, J., Del Ser, J., & Herrera, F. (2021). A prescription of methodological guidelines for comparing bio-inspired optimization algorithms. Swarm and Evolutionary Computation, 67, 100973.
+- Gottam, S., Nanda, S. J., & Maddila, R. K. (2021, December). A CNN-LSTM Model Trained with Grey Wolf Optimizer for Prediction of Household Power Consumption. In 2021 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS) (pp. 355-360). IEEE.
+- Darius, P. S., Devadason, J., & Solomon, D. G. (2022, December). Prospects of Ant Colony Optimization (ACO) in Various Domains. In 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C) (pp. 79-84). IEEE.
+- Ayub, N., Irfan, M., Awais, M., Ali, U., Ali, T., Hamdi, M., ... & Muhammad, F. (2020). Big data analytics for short and medium-term electricity load forecasting using an AI techniques ensembler. Energies, 13(19), 5193.
+- Biundini, I. Z., Melo, A. G., Coelho, F. O., Honório, L. M., Marcato, A. L., & Pinto, M. F. (2022). Experimentation and Simulation with Autonomous Coverage Path Planning for UAVs. Journal of Intelligent & Robotic Systems, 105(2), 46.
+- Yousaf, I., Anwar, F., Imtiaz, S., Almadhor, A. S., Ishmanov, F., & Kim, S. W. (2022). An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer’s-Based IoT System. Computational Intelligence and Neuroscience, 2022.
+- Xu, L., Yan, W., & Ji, J. (2023). The research of a novel WOG-YOLO algorithm for autonomous driving object detection. Scientific reports, 13(1), 3699.
+- Costache, R. D., Arabameri, A., Islam, A. R. M. T., Abba, S. I., Pandey, M., Ajin, R. S., & Pham, B. T. (2022). Flood susceptibility computation using state-of-the-art machine learning and optimization algorithms.
+- Del Ser, J., Osaba, E., Martinez, A. D., Bilbao, M. N., Poyatos, J., Molina, D., & Herrera, F. (2021, December). More is not always better: insights from a massive comparison of meta-heuristic algorithms over real-parameter optimization problems. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-7). IEEE.
+- Rustam, F., Aslam, N., De La Torre Díez, I., Khan, Y. D., Mazón, J. L. V., Rodríguez, C. L., & Ashraf, I. (2022, November). White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images. In Healthcare (Vol. 10, No. 11, p. 2230). MDPI.
+- Neupane, D., Kafle, S., Gurung, S., Neupane, S., & Bhattarai, N. (2021). Optimal sizing and financial analysis of a stand-alone SPV-micro-hydropower hybrid system considering generation uncertainty. International Journal of Low-Carbon Technologies, 16(4), 1479-1491.
+- Liang, R., Le-Hung, T., & Nguyen-Thoi, T. (2022). Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model. Journal of Building Engineering, 59, 105087.
+- He, Z., Nguyen, H., Vu, T. H., Zhou, J., Asteris, P. G., & Mammou, A. (2022). Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm-and evolution-based algorithms. Acta Geotechnica, 1-16.
+- Xu, L., Yan, W., & Ji, J. (2022). The research of a novel WOG-YOLO algorithm forautonomous driving object detection.
+- Nasir Ayub, M. I., Awais, M., Ali, U., Ali, T., Hamdi, M., Alghamdi, A., & Muhammad, F. Big Data Analytics for Short and Medium Term Electricity Load Forecasting using AI Techniques Ensembler.
+- Xie, C., Nguyen, H., Choi, Y., & Armaghani, D. J. (2022). Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays. Geoscience Frontiers, 13(2), 101313.
+- Hakemi, S., Houshmand, M., & Hosseini, S. A. (2022). A Dynamic Quantum-Inspired Genetic Algorithm with Lengthening Chromosome Size.
+- Kashifi, M. T. City-Wide Crash Risk Prediction and Interpretation Using Deep Learning Model with Multi-Source Big Data. Available at SSRN 4329686.
+- Nguyen, H., & Hoang, N. D. (2022). Computer vision-based classification of concrete spall severity using metaheuristic-optimized Extreme Gradient Boosting Machine and Deep Convolutional Neural Network. Automation in Construction, 140, 104371.
+- Zheng, J., Lu, Z., Wu, K., Ning, G. H., & Li, D. (2020). Coinage-metal-based cyclic trinuclear complexes with metal–metal interactions: Theories to experiments and structures to functions. Chemical Reviews, 120(17), 9675-9742.
+- Van Thieu, N., Barma, S. D., Van Lam, T., Kisi, O., & Mahesha, A. (2023). Groundwater level modeling using Augmented Artificial Ecosystem Optimization. Journal of Hydrology, 617, 129034.
+- Mo, Z., Zhang, Z., Miao, Q., & Tsui, K. L. (2022). Intelligent Informative Frequency Band Searching Assisted by a Dynamic Bandit Tree Method for Machine Fault Diagnosis. IEEE/ASME Transactions on Mechatronics.
+- Dangi, D., Chandel, S. T., Dixit, D. K., Sharma, S., & Bhagat, A. (2023). An Efficient Model for Sentiment Analysis using Artificial Rabbits Optimized Vector Functional Link Network. Expert Systems with Applications, 119849.
+- Dey, S., Roychoudhury, R., Malakar, S., & Sarkar, R. (2022). An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images. Applied Soft Computing, 114, 108094.
+- Mousavirad, S. J., & Alexandre, L. A. (2022). Population-based JPEG Image Compression: Problem Re-Formulation. arXiv preprint arXiv:2212.06313.
+- Tsui, K. L. Intelligent Informative Frequency Band Searching Assisted by A Dynamic Bandit Tree Method for Machine Fault Diagnosis.
+- Neupane, D. (2020). Optimal Sizing and Performance Analysis of Solar PV-Micro hydropower Hybrid System in the Context of Rural Area of Nepal (Doctoral dissertation, Pulchowk Campus).
+- LaTorre, A., Molina, D., Osaba, E., Poyatos, J., Del Ser, J., & Herrera, F. Swarm and Evolutionary Computation.
+- Vieira, M. A. (2022). Otimização dos custos operacionais de uma comunidade energética considerando transações locais em “peer-to-peer” (Doctoral dissertation).
+- Toğaçar, M. (2022). Using DarkNet models and metaheuristic optimization methods together to detect weeds growing along with seedlings. Ecological Informatics, 68, 101519.
+- Toğaçar, M. (2021). Detection of segmented uterine cancer images by Hotspot Detection method using deep learning models, Pigeon-Inspired Optimization, types-based dominant activation selection approaches. Computers in Biology and Medicine, 136, 104659.
+- Khan, N. A Short Term Electricity Load and Price Forecasting Model Based on BAT Algorithm in Logistic Regression and CNN-GRU with WOA.
+- Yelisetti, S., Saini, V. K., Kumar, R., & Lamba, R. (2022, May). Energy Consumption Cost Benefits through Smart Home Energy Management in Residential Buildings: An Indian Case Study. In 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET) (pp. 930-935). IEEE.
+- Nguyen, H., Cao, M. T., Tran, X. L., Tran, T. H., & Hoang, N. D. (2022). A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles. Neural Computing and Applications, 1-28.
+- Hirsching, C., de Jongh, S., Eser, D., Suriyah, M., & Leibfried, T. (2022). Meta-heuristic optimization of control structure and design for MMC-HVdc applications. Electric Power Systems Research, 213, 108371.
+- Amelin, V., Gatiyatullin, E., Romanov, N., Samarkhanov, R., Vasilyev, R., & Yanovich, Y. (2022). Black-Box for Blockchain Parameters Adjustment. IEEE Access, 10, 101795-101802.
+- Ngo, T. Q., Nguyen, L. Q., & Tran, V. Q. (2022). Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime. International Journal of Pavement Engineering, 1-18.
+- Zhu, Y., & Iiduka, H. (2021). Unified Algorithm Framework for Nonconvex Stochastic Optimization in Deep Neural Networks. IEEE Access, 9, 143807-143823.
+- Hakemi, S., Houshmand, M., KheirKhah, E., & Hosseini, S. A. (2022). A review of recent advances in quantum-inspired metaheuristics. Evolutionary Intelligence, 1-16.
+- Das, A., Das, S. R., Panda, J. P., Dey, A., Gajrani, K. K., Somani, N., & Gupta, N. (2022). Machine learning based modelling and optimization in hard turning of AISI D6 steel with newly developed AlTiSiN coated carbide tool. arXiv preprint arXiv:2202.00596.
+- Yelisetti, S., Saini, V. K., Kumar, R., Lamba, R., & Saxena, A. (2022). Optimal energy management system for residential buildings considering the time of use price with swarm intelligence algorithms. Journal of Building Engineering, 59, 105062.
+- Valdés, G. T. (2022). Algoritmo para la detección de vehículos y peatones combinando CNN´ sy técnicas de búsqueda.
+- Sallam, N. M., Saleh, A. I., Ali, H. A., & Abdelsalam, M. M. (2023). An efficient EGWO algorithm as feature selection for B-ALL diagnoses and its subtypes classification using peripheral blood smear images. Alexandria Engineering Journal, 68, 39-66.
+# Documents
+* Meta-heuristic Categories: (Based on this article: [link](https://doi.org/10.1016/j.procs.2020.09.075))
+ + Evolutionary-based: Idea from Darwin's law of natural selection, evolutionary computing
+ + Swarm-based: Idea from movement, interaction of birds, organization of social ...
+ + Physics-based: Idea from physics law such as Newton's law of universal gravitation, black hole, multiverse
+ + Human-based: Idea from human interaction such as queuing search, teaching learning, ...
+ + Biology-based: Idea from biology creature (or microorganism),...
+ + System-based: Idea from eco-system, immune-system, network-system, ...
+ + Math-based: Idea from mathematical form or mathematical law such as sin-cosin
+ + Music-based: Idea from music instrument
+* Difficulty - Difficulty Level (Personal Opinion): **Objective observation from author**. Depend on the number of
+ parameters, number of equations, the original ideas, time spend for coding, source lines of code (SLOC).
+ + Easy: A few paras, few equations, SLOC very short
+ + Medium: more equations than Easy level, SLOC longer than Easy level
+ + Hard: Lots of equations, SLOC longer than Medium level, the paper hard to read.
+ + Hard* - Very hard: Lots of equations, SLOC too long, the paper is very hard to read.
+** For newbie, we recommend to read the paper of algorithms which difficulty is "easy" or "medium" difficulty level.
+| **Group** | **Name** | **Module** | **Class** | **Year** | **Paras** | **Difficulty** |
+|--------------|-------------------------------------------------|------------|------------------|----------|-----------|----------------|
+| Evolutionary | Evolutionary Programming | EP | OriginalEP | 1964 | 3 | easy |
+| Evolutionary | - | - | LevyEP | - | 3 | easy |
+| Evolutionary | Evolution Strategies | ES | OriginalES | 1971 | 3 | easy |
+| Evolutionary | - | - | LevyES | - | 3 | easy |
+| Evolutionary | Memetic Algorithm | MA | OriginalMA | 1989 | 7 | easy |
+| Evolutionary | Genetic Algorithm | GA | BaseGA | 1992 | 4 | easy |
+| Evolutionary | - | - | SingleGA | - | 7 | easy |
+| Evolutionary | - | - | MultiGA | - | 7 | easy |
+| Evolutionary | - | - | EliteSingleGA | - | 10 | easy |
+| Evolutionary | - | - | EliteMultiGA | - | 10 | easy |
+| Evolutionary | Differential Evolution | DE | BaseDE | 1997 | 5 | easy |
+| Evolutionary | - | - | JADE | 2009 | 6 | medium |
+| Evolutionary | - | - | SADE | 2005 | 2 | medium |
+| Evolutionary | - | - | SHADE | 2013 | 4 | medium |
+| Evolutionary | - | - | L_SHADE | 2014 | 4 | medium |
+| Evolutionary | - | - | SAP_DE | 2006 | 3 | medium |
+| Evolutionary | Flower Pollination Algorithm | FPA | OriginalFPA | 2014 | 4 | medium |
+| Evolutionary | Coral Reefs Optimization | CRO | OriginalCRO | 2014 | 11 | medium |
+| Evolutionary | - | - | OCRO | 2019 | 12 | medium |
+| - | - | - | - | - | - | - |
+| Swarm | Particle Swarm Optimization | PSO | OriginalPSO | 1995 | 6 | easy |
+| Swarm | - | - | PPSO | 2019 | 2 | medium |
+| Swarm | - | - | HPSO_TVAC | 2017 | 4 | medium |
+| Swarm | - | - | C_PSO | 2015 | 6 | medium |
+| Swarm | - | - | CL_PSO | 2006 | 6 | medium |
+| Swarm | Bacterial Foraging Optimization | BFO | OriginalBFO | 2002 | 10 | hard |
+| Swarm | - | - | ABFO | 2019 | 8 | medium |
+| Swarm | Bees Algorithm | BeesA | OriginalBeesA | 2005 | 8 | medium |
+| Swarm | - | - | ProbBeesA | 2015 | 5 | medium |
+| Swarm | Cat Swarm Optimization | CSO | OriginalCSO | 2006 | 11 | hard |
+| Swarm | Artificial Bee Colony | ABC | OriginalABC | 2007 | 8 | medium |
+| Swarm | Ant Colony Optimization | ACO-R | OriginalACOR | 2008 | 5 | easy |
+| Swarm | Cuckoo Search Algorithm | CSA | OriginalCSA | 2009 | 3 | medium |
+| Swarm | Firefly Algorithm | FFA | OriginalFFA | 2009 | 8 | easy |
+| Swarm | Fireworks Algorithm | FA | OriginalFA | 2010 | 7 | medium |
+| Swarm | Bat Algorithm | BA | OriginalBA | 2010 | 6 | medium |
+| Swarm | - | - | AdaptiveBA | - | 8 | medium |
+| Swarm | - | - | ModifiedBA | - | 5 | medium |
+| Swarm | Fruit-fly Optimization Algorithm | FOA | OriginalFOA | 2012 | 2 | easy |
+| Swarm | - | - | BaseFOA | - | 2 | easy |
+| Swarm | - | - | WhaleFOA | 2020 | 2 | medium |
+| Swarm | Social Spider Optimization | SSpiderO | OriginalSSpiderO | 2018 | 4 | hard* |
+| Swarm | Grey Wolf Optimizer | GWO | OriginalGWO | 2014 | 2 | easy |
+| Swarm | - | - | RW_GWO | 2019 | 2 | easy |
+| Swarm | Social Spider Algorithm | SSpiderA | OriginalSSpiderA | 2015 | 5 | medium |
+| Swarm | Ant Lion Optimizer | ALO | OriginalALO | 2015 | 2 | easy |
+| Swarm | - | - | BaseALO | - | 2 | easy |
+| Swarm | Moth Flame Optimization | MFO | OriginalMFO | 2015 | 2 | easy |
+| Swarm | - | - | BaseMFO | - | 2 | easy |
+| Swarm | Elephant Herding Optimization | EHO | OriginalEHO | 2015 | 5 | easy |
+| Swarm | Jaya Algorithm | JA | OriginalJA | 2016 | 2 | easy |
+| Swarm | - | - | BaseJA | - | 2 | easy |
+| Swarm | - | - | LevyJA | 2021 | 2 | easy |
+| Swarm | Whale Optimization Algorithm | WOA | OriginalWOA | 2016 | 2 | medium |
+| Swarm | - | - | HI_WOA | 2019 | 3 | medium |
+| Swarm | Dragonfly Optimization | DO | OriginalDO | 2016 | 2 | medium |
+| Swarm | Bird Swarm Algorithm | BSA | OriginalBSA | 2016 | 9 | medium |
+| Swarm | Spotted Hyena Optimizer | SHO | OriginalSHO | 2017 | 4 | medium |
+| Swarm | Salp Swarm Optimization | SSO | OriginalSSO | 2017 | 2 | easy |
+| Swarm | Swarm Robotics Search And Rescue | SRSR | OriginalSRSR | 2017 | 2 | hard* |
+| Swarm | Grasshopper Optimisation Algorithm | GOA | OriginalGOA | 2017 | 4 | easy |
+| Swarm | Coyote Optimization Algorithm | COA | OriginalCOA | 2018 | 3 | medium |
+| Swarm | Moth Search Algorithm | MSA | OriginalMSA | 2018 | 5 | easy |
+| Swarm | Sea Lion Optimization | SLO | OriginalSLO | 2019 | 2 | medium |
+| Swarm | - | - | ModifiedSLO | - | 2 | medium |
+| Swarm | - | - | ImprovedSLO | - | 4 | medium |
+| Swarm | Nake Mole-Rat Algorithm | NMRA | OriginalNMRA | 2019 | 3 | easy |
+| Swarm | - | - | ImprovedNMRA | - | 4 | medium |
+| Swarm | Pathfinder Algorithm | PFA | OriginalPFA | 2019 | 2 | medium |
+| Swarm | Sailfish Optimizer | SFO | OriginalSFO | 2019 | 5 | easy |
+| Swarm | - | - | ImprovedSFO | - | 3 | medium |
+| Swarm | Harris Hawks Optimization | HHO | OriginalHHO | 2019 | 2 | medium |
+| Swarm | Manta Ray Foraging Optimization | MRFO | OriginalMRFO | 2020 | 3 | medium |
+| Swarm | Bald Eagle Search | BES | OriginalBES | 2020 | 7 | easy |
+| Swarm | Sparrow Search Algorithm | SSA | OriginalSSA | 2020 | 5 | medium |
+| Swarm | - | - | BaseSSA | - | 5 | medium |
+| Swarm | Hunger Games Search | HGS | OriginalHGS | 2021 | 4 | medium |
+| Swarm | Aquila Optimizer | AO | OriginalAO | 2021 | 2 | easy |
+| Swarm | Hybrid Grey Wolf - Whale Optimization Algorithm | GWO | GWO_WOA | 2022 | 2 | easy |
+| Swarm | Marine Predators Algorithm | MPA | OriginalMPA | 2020 | 2 | medium |
+| Swarm | Honey Badger Algorithm | HBA | OriginalHBA | 2022 | 2 | easy |
+| Swarm | Sand Cat Swarm Optimization | SCSO | OriginalSCSO | 2022 | 2 | easy |
+| Swarm | Tuna Swarm Optimization | TSO | OriginalTSO | 2021 | 2 | medium |
+| Swarm | African Vultures Optimization Algorithm | AVOA | OriginalAVOA | 2022 | 7 | medium |
+| Swarm | Artificial Gorilla Troops Optimization | AGTO | OriginalAGTO | 2021 | 5 | medium |
+| Swarm | Artificial Rabbits Optimization | ARO | OriginalARO | 2022 | 2 | easy |
+| Swarm | Dwarf Mongoose Optimization Algorithm | DMOA | OriginalDMOA | 2022 | 4 | medium |
+| Swarm | - | - | DevDMOA | - | 3 | medium |
+| - | - | - | - | - | - | - |
+| Physics | Simulated Annealling | SA | OriginalSA | 1987 | 9 | medium |
+| Physics | Wind Driven Optimization | WDO | OriginalWDO | 2013 | 7 | easy |
+| Physics | Multi-Verse Optimizer | MVO | OriginalMVO | 2016 | 4 | easy |
+| Physics | - | - | BaseMVO | - | 4 | easy |
+| Physics | Tug of War Optimization | TWO | OriginalTWO | 2016 | 2 | easy |
+| Physics | - | - | OppoTWO | - | 2 | medium |
+| Physics | - | - | LevyTWO | - | 2 | medium |
+| Physics | - | - | EnhancedTWO | 2020 | 2 | medium |
+| Physics | Electromagnetic Field Optimization | EFO | OriginalEFO | 2016 | 6 | easy |
+| Physics | - | - | BaseEFO | - | 6 | medium |
+| Physics | Nuclear Reaction Optimization | NRO | OriginalNRO | 2019 | 2 | hard* |
+| Physics | Henry Gas Solubility Optimization | HGSO | OriginalHGSO | 2019 | 3 | medium |
+| Physics | Atom Search Optimization | ASO | OriginalASO | 2019 | 4 | medium |
+| Physics | Equilibrium Optimizer | EO | OriginalEO | 2019 | 2 | easy |
+| Physics | - | - | ModifiedEO | 2020 | 2 | medium |
+| Physics | - | - | AdaptiveEO | 2020 | 2 | medium |
+| Physics | Archimedes Optimization Algorithm | ArchOA | OriginalArchOA | 2021 | 8 | medium |
+| - | - | - | - | - | - | - |
+| Human | Culture Algorithm | CA | OriginalCA | 1994 | 3 | easy |
+| Human | Imperialist Competitive Algorithm | ICA | OriginalICA | 2007 | 8 | hard* |
+| Human | Teaching Learning-based Optimization | TLO | OriginalTLO | 2011 | 2 | easy |
+| Human | - | - | BaseTLO | 2012 | 2 | easy |
+| Human | - | - | ITLO | 2013 | 3 | medium |
+| Human | Brain Storm Optimization | BSO | OriginalBSO | 2011 | 8 | medium |
+| Human | - | - | ImprovedBSO | 2017 | 7 | medium |
+| Human | Queuing Search Algorithm | QSA | OriginalQSA | 2019 | 2 | hard |
+| Human | - | - | BaseQSA | - | 2 | hard |
+| Human | - | - | OppoQSA | - | 2 | hard |
+| Human | - | - | LevyQSA | - | 2 | hard |
+| Human | - | - | ImprovedQSA | 2021 | 2 | hard |
+| Human | Search And Rescue Optimization | SARO | OriginalSARO | 2019 | 4 | medium |
+| Human | - | - | BaseSARO | - | 4 | medium |
+| Human | Life Choice-Based Optimization | LCO | OriginalLCO | 2019 | 3 | easy |
+| Human | - | - | BaseLCO | - | 3 | easy |
+| Human | - | - | ImprovedLCO | - | 2 | easy |
+| Human | Social Ski-Driver Optimization | SSDO | OriginalSSDO | 2019 | 2 | easy |
+| Human | Gaining Sharing Knowledge-based Algorithm | GSKA | OriginalGSKA | 2019 | 6 | medium |
+| Human | - | - | BaseGSKA | - | 4 | medium |
+| Human | Coronavirus Herd Immunity Optimization | CHIO | OriginalCHIO | 2020 | 4 | medium |
+| Human | - | - | BaseCHIO | - | 4 | medium |
+| Human | Forensic-Based Investigation Optimization | FBIO | OriginalFBIO | 2020 | 2 | medium |
+| Human | - | - | BaseFBIO | - | 2 | medium |
+| Human | Battle Royale Optimization | BRO | OriginalBRO | 2020 | 3 | medium |
+| Human | - | - | BaseBRO | - | 3 | medium |
+| Human | Student Psychology Based Optimization | SPBO | OriginalSPBO | 2020 | 2 | medium |
+| Human | - | - | DevSPBO | | 2 | medium |
+| - | - | - | - | - | - | - |
+| Bio | Invasive Weed Optimization | IWO | OriginalIWO | 2006 | 7 | easy |
+| Bio | Biogeography-Based Optimization | BBO | OriginalBBO | 2008 | 4 | easy |
+| Bio | - | - | BaseBBO | - | 4 | easy |
+| Bio | Virus Colony Search | VCS | OriginalVCS | 2016 | 4 | hard* |
+| Bio | - | - | BaseVCS | - | 4 | hard* |
+| Bio | Satin Bowerbird Optimizer | SBO | OriginalSBO | 2017 | 5 | easy |
+| Bio | - | - | BaseSBO | - | 5 | easy |
+| Bio | Earthworm Optimisation Algorithm | EOA | OriginalEOA | 2018 | 8 | medium |
+| Bio | Wildebeest Herd Optimization | WHO | OriginalWHO | 2019 | 12 | hard |
+| Bio | Slime Mould Algorithm | SMA | OriginalSMA | 2020 | 3 | easy |
+| Bio | - | - | BaseSMA | - | 3 | easy |
+| Bio | Barnacles Mating Optimizer | BMO | OriginalBMO | 2018 | 3 | easy |
+| Bio | Tunicate Swarm Algorithm | TSA | OriginalTSA | 2020 | 2 | easy |
+| Bio | Symbiotic Organisms Search | SOS | OriginalSOS | 2014 | 2 | medium |
+| Bio | Seagull Optimization Algorithm | SOA | OriginalSOA | 2019 | 3 | easy |
+| Bio | - | - | DevSOA | - | 3 | easy |
+| - | - | - | - | - | - | - |
+| System | Germinal Center Optimization | GCO | OriginalGCO | 2018 | 4 | medium |
+| System | - | - | BaseGCO | - | 4 | medium |
+| System | Water Cycle Algorithm | WCA | OriginalWCA | 2012 | 5 | medium |
+| System | Artificial Ecosystem-based Optimization | AEO | OriginalAEO | 2019 | 2 | easy |
+| System | - | - | EnhancedAEO | 2020 | 2 | medium |
+| System | - | - | ModifiedAEO | 2020 | 2 | medium |
+| System | - | - | ImprovedAEO | 2021 | 2 | medium |
+| System | - | - | AugmentedAEO | 2022 | 2 | medium |
+| - | - | - | - | - | - | - |
+| Math | Hill Climbing | HC | OriginalHC | 1993 | 3 | easy |
+| Math | - | - | SwarmHC | - | 3 | easy |
+| Math | Cross-Entropy Method | CEM | OriginalCEM | 1997 | 4 | easy |
+| Math | Sine Cosine Algorithm | SCA | OriginalSCA | 2016 | 2 | easy |
+| Math | - | - | BaseSCA | - | 2 | easy |
+| Math | Gradient-Based Optimizer | GBO | OriginalGBO | 2020 | 5 | medium |
+| Math | Arithmetic Optimization Algorithm | AOA | OrginalAOA | 2021 | 6 | easy |
+| Math | Chaos Game Optimization | CGO | OriginalCGO | 2021 | 2 | easy |
+| Math | Pareto-like Sequential Sampling | PSS | OriginalPSS | 2021 | 4 | medium |
+| Math | weIghted meaN oF vectOrs | INFO | OriginalINFO | 2022 | 2 | medium |
+| Math | RUNge Kutta optimizer | RUN | OriginalRUN | 2021 | 2 | hard |
+| Math | Circle Search Algorithm | CircleSA | OriginalCircleSA | 2022 | 3 | easy |
+| - | - | - | - | - | - | - |
+| Music | Harmony Search | HS | OriginalHS | 2001 | 4 | easy |
+| Music | - | - | BaseHS | - | 4 | easy |
+### A
+* **ABC - Artificial Bee Colony**
+ * **OriginalABC**: Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
+* **ACOR - Ant Colony Optimization**.
+ * **OriginalACOR**: Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European journal of operational research, 185(3), 1155-1173.
+* **ALO - Ant Lion Optimizer**
+ * **OriginalALO**: Mirjalili S (2015). “The Ant Lion Optimizer.” Advances in Engineering Software, 83, 80-98. doi: [10.1016/j.advengsoft.2015.01.010](https://doi.org/10.1016/j.advengsoft.2015.01.010)
+ * **BaseALO**: The developed version
+* **AEO - Artificial Ecosystem-based Optimization**
+ * **OriginalAEO**: Zhao, W., Wang, L., & Zhang, Z. (2019). Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Computing and Applications, 1-43.
+ * **AugmentedAEO**: Van Thieu, N., Barma, S. D., Van Lam, T., Kisi, O., & Mahesha, A. (2022). Groundwater level modeling using Augmented Artificial Ecosystem Optimization. Journal of Hydrology, 129034.
+ * **ImprovedAEO**: Rizk-Allah, R. M., & El-Fergany, A. A. (2020). Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model. International Journal of Hydrogen Energy.
+ * **EnhancedAEO**: Eid, A., Kamel, S., Korashy, A., & Khurshaid, T. (2020). An Enhanced Artificial Ecosystem-Based Optimization for Optimal Allocation of Multiple Distributed Generations. IEEE Access, 8, 178493-178513.
+ * **ModifiedAEO**: Menesy, A. S., Sultan, H. M., Korashy, A., Banakhr, F. A., Ashmawy, M. G., & Kamel, S. (2020). Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access, 8, 31892-31909.
+* **ASO - Atom Search Optimization**
+ * **OriginalASO**: Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283-304.
+* **ArchOA - Archimedes Optimization Algorithm**
+ * **OriginalArchOA**: Hashim, F. A., Hussain, K., Houssein, E. H., Mabrouk, M. S., & Al-Atabany, W. (2021). Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 51(3), 1531-1551.
+* **AOA - Arithmetic Optimization Algorithm**
+ * **OriginalAOA**: Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609.
+* **AO - Aquila Optimizer**
+ * **OriginalAO**: Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A., & Gandomi, A. H. (2021). Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Computers & Industrial Engineering, 157, 107250.
+* **AVOA - African Vultures Optimization Algorithm**
+ * **OriginalAVOA**: Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.
+* **AGTO - Artificial Gorilla Troops Optimization**
+ * **OriginalAGTO**: Abdollahzadeh, B., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2021). Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems. International Journal of Intelligent Systems, 36(10), 5887-5958.
+* **ARO - Artificial Rabbits Optimization**:
+ * **OriginalARO**: Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W. (2022). Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 114, 105082.
+### B
+* **BFO - Bacterial Foraging Optimization**
+ * **OriginalBFO**: Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE control systems magazine, 22(3), 52-67.
+ * **ABFO**: Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019, April). Building resource auto-scaler with functional-link neural network and adaptive bacterial foraging optimization. In International Conference on Theory and Applications of Models of Computation (pp. 501-517). Springer, Cham.
+* **BeesA - Bees Algorithm**
+ * **OriginalBeesA**: Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2005). The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK.
+ * **ProbBeesA**: The probabilitic version of: Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454-459). Elsevier Science Ltd.
+* **BBO - Biogeography-Based Optimization**
+ * **OriginalBBO**: Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.
+ * **BaseBBO**: The developed version
+* **BA - Bat Algorithm**
+ * **OriginalBA**: Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg.
+ * **AdaptiveBA**: Wang, X., Wang, W. and Wang, Y., 2013, July. An adaptive bat algorithm. In International Conference on Intelligent Computing(pp. 216-223). Springer, Berlin, Heidelberg.
+ * **ModifiedBA**: Dong, H., Li, T., Ding, R. and Sun, J., 2018. A novel hybrid genetic algorithm with granular information for feature selection and optimization. Applied Soft Computing, 65, pp.33-46.
+* **BSO - Brain Storm Optimization**
+ * **OriginalBSO**: . Shi, Y. (2011, June). Brain storm optimization algorithm. In International conference in swarm intelligence (pp. 303-309). Springer, Berlin, Heidelberg.
+ * **ImprovedBSO**: El-Abd, M., 2017. Global-best brain storm optimization algorithm. Swarm and evolutionary computation, 37, pp.27-44.
+* **BSA - Bird Swarm Algorithm**
+ * **OriginalBSA**: Meng, X. B., Gao, X. Z., Lu, L., Liu, Y., & Zhang, H. (2016). A new bio-inspired optimisation algorithm:Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 28(4), 673-687.
+* **BMO - Barnacles Mating Optimizer**:
+ * **OriginalBMO**: Sulaiman, M. H., Mustaffa, Z., Saari, M. M., Daniyal, H., Daud, M. R., Razali, S., & Mohamed, A. I. (2018, June). Barnacles mating optimizer: a bio-inspired algorithm for solving optimization problems. In 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 265-270). IEEE.
+* **BES - Bald Eagle Search**
+ * **OriginalBES**: Alsattar, H. A., Zaidan, A. A., & Zaidan, B. B. (2019). Novel meta-heuristic bald eagle search optimisation algorithm. Artificial Intelligence Review, 1-28.
+* **BRO - Battle Royale Optimization**
+ * **OriginalBRO**: Rahkar Farshi, T. (2020). Battle royale optimization algorithm. Neural Computing and Applications, 1-19.
+ * **BaseBRO**: The developed version
+### C
+* **CA - Culture Algorithm**
+ * **OriginalCA**: Reynolds, R.G., 1994, February. An introduction to cultural algorithms. In Proceedings of the third annual conference on evolutionary programming (Vol. 24, pp. 131-139). River Edge, NJ: World Scientific.
+* **CEM - Cross Entropy Method**
+ * **OriginalCEM**: Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability, 1(2), 127-190.
+* **CSO - Cat Swarm Optimization**
+ * **OriginalCSO**: Chu, S. C., Tsai, P. W., & Pan, J. S. (2006, August). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg.
+* **CSA - Cuckoo Search Algorithm**
+ * **OriginalCSA**: Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210-214). Ieee.
+* **CRO - Coral Reefs Optimization**
+ * **OriginalCRO**: Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., & Portilla-Figueras, J. A. (2014). The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014.
+ * **OCRO**: Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient time-series forecasting using neural network and opposition-based coral reefs optimization. International Journal of Computational Intelligence Systems, 12(2), 1144-1161.
+* **COA - Coyote Optimization Algorithm**
+ * **OriginalCOA**: Pierezan, J., & Coelho, L. D. S. (2018, July). Coyote optimization algorithm: a new metaheuristic for global optimization problems. In 2018 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE.
+* **CHIO - Coronavirus Herd Immunity Optimization**
+ * **OriginalCHIO**: Al-Betar, M. A., Alyasseri, Z. A. A., Awadallah, M. A., & Abu Doush, I. (2021). Coronavirus herd immunity optimizer (CHIO). Neural Computing and Applications, 33(10), 5011-5042.
+ * **BaseCHIO**: The developed version
+* **CGO - Chaos Game Optimization**
+ * **OriginalCGO**: Talatahari, S., & Azizi, M. (2021). Chaos Game Optimization: a novel metaheuristic algorithm. Artificial Intelligence Review, 54(2), 917-1004.
+* **CSA - Circle Search Algorithm**
+ * **OriginalCSA**: Qais, M. H., Hasanien, H. M., Turky, R. A., Alghuwainem, S., Tostado-Véliz, M., & Jurado, F. (2022). Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm. Mathematics, 10(10), 1626.
+### D
+* **DE - Differential Evolution**
+ * **BaseDE**: Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
+ * **JADE**: Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions on evolutionary computation, 13(5), 945-958.
+ * **SADE**: Qin, A. K., & Suganthan, P. N. (2005, September). Self-adaptive differential evolution algorithm for numerical optimization. In 2005 IEEE congress on evolutionary computation (Vol. 2, pp. 1785-1791). IEEE.
+ * **SHADE**: Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE.
+ * **L_SHADE**: Tanabe, R., & Fukunaga, A. S. (2014, July). Improving the search performance of SHADE using linear population size reduction. In 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658-1665). IEEE.
+ * **SAP_DE**: Teo, J. (2006). Exploring dynamic self-adaptive populations in differential evolution. Soft Computing, 10(8), 673-686.
+* **DSA - Differential Search Algorithm (not done)**
+ * **BaseDSA**: Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers & Geosciences, 46, 229-247.
+* **DO - Dragonfly Optimization**
+ * **OriginalDO**: Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.
+* **DMOA - Dwarf Mongoose Optimization Algorithm**
+ * **OriginalDMOA**: Agushaka, J. O., Ezugwu, A. E., & Abualigah, L. (2022). Dwarf mongoose optimization algorithm. Computer methods in applied mechanics and engineering, 391, 114570.
+ * **DevDMOA**: The developed version
+### E
+* **ES - Evolution Strategies** .
+ * **OriginalES**: Schwefel, H. P. (1984). Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution. Annals of Operations Research, 1(2), 165-167.
+ * **LevyES**: Zhang, S., & Salari, E. (2005). Competitive learning vector quantization with evolution strategies for image compression. Optical Engineering, 44(2), 027006.
+* **EP - Evolutionary programming** .
+ * **OriginalEP**: Fogel, L. J. (1994). Evolutionary programming in perspective: The top-down view. Computational intelligence: Imitating life.
+ * **LevyEP**: Lee, C.Y. and Yao, X., 2001, May. Evolutionary algorithms with adaptive lévy mutations. In Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546) (Vol. 1, pp. 568-575). IEEE.
+* **EHO - Elephant Herding Optimization** .
+ * **OriginalEHO**: Wang, G. G., Deb, S., & Coelho, L. D. S. (2015, December). Elephant herding optimization. In 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (pp. 1-5). IEEE.
+* **EFO - Electromagnetic Field Optimization** .
+ * **OriginalEFO**:Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8-22.
+ * **BaseEFO**: The developed version
+* **EOA - Earthworm Optimisation Algorithm** .
+ * **OriginalEOA**: Wang, G. G., Deb, S., & dos Santos Coelho, L. (2018). Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. IJBIC, 12(1), 1-22.
+* **EO - Equilibrium Optimizer** .
+ * **OriginalEO**: Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2019). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems.
+ * **ModifiedEO**: Gupta, S., Deep, K., & Mirjalili, S. (2020). An efficient equilibrium optimizer with mutation strategy for numerical optimization. Applied Soft Computing, 96, 106542.
+ * **AdaptiveEO**: Wunnava, A., Naik, M. K., Panda, R., Jena, B., & Abraham, A. (2020). A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Engineering Applications of Artificial Intelligence, 94, 103836.
+### F
+* **FFA - Firefly Algorithm**
+ * **OriginalFFA**: Łukasik, S., & Żak, S. (2009, October). Firefly algorithm for continuous constrained optimization tasks. In International conference on computational collective intelligence (pp. 97-106). Springer, Berlin, Heidelberg.
+* **FA - Fireworks algorithm**
+ * **OriginalFA**: Tan, Y., & Zhu, Y. (2010, June). Fireworks algorithm for optimization. In International conference in swarm intelligence (pp. 355-364). Springer, Berlin, Heidelberg.
+* **FPA - Flower Pollination Algorithm**
+ * **OriginalFPA**: Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240-249). Springer, Berlin, Heidelberg.
+* **FOA - Fruit-fly Optimization Algorithm**
+ * **OriginalFOA**: Pan, W. T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74.
+ * **BaseFOA**: The developed version
+ * **WhaleFOA**: Fan, Y., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., & Li, C. (2020). Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications, 159, 113502.
+* **FBIO - Forensic-Based Investigation Optimization**
+ * **OriginalFBIO**: Chou, J.S. and Nguyen, N.M., 2020. FBI inspired meta-optimization. Applied Soft Computing, p.106339.
+ * **BaseFBIO**: Fathy, A., Rezk, H. and Alanazi, T.M., 2021. Recent approach of forensic-based investigation algorithm for optimizing fractional order PID-based MPPT with proton exchange membrane fuel cell.IEEE Access,9, pp.18974-18992.
+* **FHO - Fire Hawk Optimization**
+ * **OriginalFHO**: Azizi, M., Talatahari, S., & Gandomi, A. H. (2022). Fire Hawk Optimizer: a novel metaheuristic algorithm. Artificial Intelligence Review, 1-77.
+### G
+* **GA - Genetic Algorithm**
+ * **BaseGA**: Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
+ * **SingleGA**: De Falco, I., Della Cioppa, A. and Tarantino, E., 2002. Mutation-based genetic algorithm: performance evaluation. Applied Soft Computing, 1(4), pp.285-299.
+ * **MultiGA**: De Jong, K.A. and Spears, W.M., 1992. A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of mathematics and Artificial intelligence, 5(1), pp.1-26.
+ * **EliteSingleGA**: Elite version of Single-point mutation GA
+ * **EliteMultiGA**: Elite version of Multiple-point mutation GA
+* **GWO - Grey Wolf Optimizer**
+ * **OriginalGWO**: Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
+ * **RW_GWO**: Gupta, S., & Deep, K. (2019). A novel random walk grey wolf optimizer. Swarm and evolutionary computation, 44, 101-112.
+ * **GWO_WOA**: Obadina, O. O., Thaha, M. A., Althoefer, K., & Shaheed, M. H. (2022). Dynamic characterization of a master–slave robotic manipulator using a hybrid grey wolf–whale optimization algorithm. Journal of Vibration and Control, 28(15-16), 1992-2003.
+* **GOA - Grasshopper Optimisation Algorithm**
+ * **OriginalGOA**: Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 30-47.
+* **GCO - Germinal Center Optimization**
+ * **OriginalGCO**: Villaseñor, C., Arana-Daniel, N., Alanis, A. Y., López-Franco, C., & Hernandez-Vargas, E. A. (2018). Germinal center optimization algorithm. International Journal of Computational Intelligence Systems, 12(1), 13-27.
+ * **BaseGCO**: The developed version
+* **GSKA - Gaining Sharing Knowledge-based Algorithm**
+ * **OriginalGSKA**: Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 1-29.
+ * **BaseGSKA**: Mohamed, A.W., Hadi, A.A., Mohamed, A.K. and Awad, N.H., 2020, July. Evaluating the performance of adaptive GainingSharing knowledge based algorithm on CEC 2020 benchmark problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.
+* **GBO - Gradient-Based Optimizer**
+ * **OriginalGBO**: Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new metaheuristic optimization algorithm. Information Sciences, 540, 131-159.
+### H
+* **HC - Hill Climbing** .
+ * **OriginalHC**: Talbi, E. G., & Muntean, T. (1993, January). Hill-climbing, simulated annealing and genetic algorithms: a comparative study and application to the mapping problem. In [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences (Vol. 2, pp. 565-573). IEEE.
+ * **SwarmHC**: The developed version based on swarm-based idea (Original is single-solution based method)
+* **HS - Harmony Search** .
+ * **OriginalHS**: Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm:harmony search. simulation, 76(2), 60-68.
+ * **BaseHS**: The developed version
+* **HHO - Harris Hawks Optimization** .
+ * **OriginalHHO**: Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-872.
+* **HGSO - Henry Gas Solubility Optimization** .
+ * **OriginalHGSO**: Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, 646-667.
+* **HGS - Hunger Games Search** .
+ * **OriginalHGS**: Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search:Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.
+* **HHOA - Horse Herd Optimization Algorithm (not done)** .
+ * **BaseHHOA**: MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems, 213, 106711.
+* **HBA - Honey Badger Algorithm**:
+ * **OriginalHBA**: Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S., & Al-Atabany, W. (2022). Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Mathematics and Computers in Simulation, 192, 84-110.
+### I
+* **IWO - Invasive Weed Optimization** .
+ * **OriginalIWO**: Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics, 1(4), 355-366.
+* **ICA - Imperialist Competitive Algorithm**
+ * **OriginalICA**: Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.
+* **INFO - weIghted meaN oF vectOrs**:
+ * **OriginalINFO**: Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
+### J
+* **JA - Jaya Algorithm**
+ * **OriginalJA**: Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
+ * **BaseJA**: The developed version
+ * **LevyJA**: Iacca, G., dos Santos Junior, V. C., & de Melo, V. V. (2021). An improved Jaya optimization algorithm with Levy flight. Expert Systems with Applications, 165, 113902.
+### K
+### L
+* **LCO - Life Choice-based Optimization**
+ * **OriginalLCO**: Khatri, A., Gaba, A., Rana, K. P. S., & Kumar, V. (2019). A novel life choice-based optimizer. Soft Computing, 1-21.
+ * **BaseLCO**: The developed version
+ * **ImprovedLCO**: The improved version using Gaussian distribution and Mutation Mechanism
+### M
+* **MA - Memetic Algorithm**
+ * **OriginalMA**: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.
+* **MFO - Moth Flame Optimization**
+ * **OriginalMFO**: Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249.
+ * **BaseMFO**: The developed version
+* **MVO - Multi-Verse Optimizer**
+ * **OriginalMVO**: Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495-513.
+ * **BaseMVO**: The developed version
+* **MSA - Moth Search Algorithm**
+ * **OriginalMSA**: Wang, G. G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151-164.
+* **MRFO - Manta Ray Foraging Optimization**
+ * **OriginalMRFO**: Zhao, W., Zhang, Z., & Wang, L. (2020). Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence, 87, 103300.
+* **MPA - Marine Predators Algorithm**:
+ * **OriginalMPA**: Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert systems with applications, 152, 113377.
+### N
+* **NRO - Nuclear Reaction Optimization**
+ * **OriginalNRO**: Wei, Z., Huang, C., Wang, X., Han, T., & Li, Y. (2019). Nuclear Reaction Optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access.
+* **NMRA - Nake Mole-Rat Algorithm**
+ * **OriginalNMRA**: Salgotra, R., & Singh, U. (2019). The naked mole-rat algorithm. Neural Computing and Applications, 31(12), 8837-8857.
+ * **ImprovedNMRA**: Singh, P., Mittal, N., Singh, U. and Salgotra, R., 2021. Naked mole-rat algorithm with improved exploration and exploitation capabilities to determine 2D and 3D coordinates of sensor nodes in WSNs. Arabian Journal for Science and Engineering, 46(2), pp.1155-1178.
+### O
+### P
+* **PSO - Particle Swarm Optimization**
+ * **OriginalPSO**: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Ieee.
+ * **PPSO**: Ghasemi, M., Akbari, E., Rahimnejad, A., Razavi, S. E., Ghavidel, S., & Li, L. (2019). Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Computing, 23(19), 9701-9718.
+ * **HPSO_TVAC**: Ghasemi, M., Aghaei, J., & Hadipour, M. (2017). New self-organising hierarchical PSO with jumping time-varying acceleration coefficients. Electronics Letters, 53(20), 1360-1362.
+ * **C_PSO**: Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 25(5), 1261-1271.
+ * **CL_PSO**: Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE transactions on evolutionary computation, 10(3), 281-295.
+* **PFA - Pathfinder Algorithm**
+ * **OriginalPFA**: Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm. Applied Soft Computing, 78, 545-568.
+* **PSS - Pareto-like Sequential Sampling**
+ * **OriginalPSS**: Shaqfa, M., & Beyer, K. (2021). Pareto-like sequential sampling heuristic for global optimisation. Soft Computing, 25(14), 9077-9096.
+### Q
+* **QSA - Queuing Search Algorithm**
+ * **OriginalQSA**: Zhang, J., Xiao, M., Gao, L., & Pan, Q. (2018). Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling, 63, 464-490.
+ * **BaseQSA**: The developed version
+ * **OppoQSA**: Zheng, X. and Nguyen, H., 2022. A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm. Chemosphere, 287, p.132251.
+ * **LevyQSA**: Abderazek, H., Hamza, F., Yildiz, A.R., Gao, L. and Sait, S.M., 2021. A comparative analysis of the queuing search algorithm, the sine-cosine algorithm, the ant lion algorithm to determine the optimal weight design problem of a spur gear drive system. Materials Testing, 63(5), pp.442-447.
+ * **ImprovedQSA**: Nguyen, B.M., Hoang, B., Nguyen, T. and Nguyen, G., 2021. nQSV-Net: a novel queuing search variant for global space search and workload modeling. Journal of Ambient Intelligence and Humanized Computing, 12(1), pp.27-46.
+### R
+* **RUN - RUNge Kutta optimizer**:
+ * **OriginalRUN**: Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
+### S
+* **SA - Simulated Annealling**
+ * **OriginalSA**: . Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated annealing: Theory and applications (pp. 7-15). Springer, Dordrecht.
+* **SSpiderO - Social Spider Optimization**
+ * **OriginalSSpiderO**: Cuevas, E., Cienfuegos, M., ZaldíVar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384.
+* **SOS - Symbiotic Organisms Search**:
+ * **OriginalSOS**: Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112.
+* **SSpiderA - Social Spider Algorithm**
+ * **OriginalSSpiderA**: James, J. Q., & Li, V. O. (2015). A social spider algorithm for global optimization. Applied Soft Computing, 30, 614-627.
+* **SCA - Sine Cosine Algorithm**
+ * **OriginalSCA**: Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133.
+ * **BaseSCA**: Attia, A.F., El Sehiemy, R.A. and Hasanien, H.M., 2018. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, pp.331-343.
+* **SRSR - Swarm Robotics Search And Rescue**
+ * **OriginalSRSR**: Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach. Applied Soft Computing, 57, 708-726.
+* **SBO - Satin Bowerbird Optimizer**
+ * **OriginalSBO**: Moosavi, S. H. S., & Bardsiri, V. K. (2017). Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Engineering Applications of Artificial Intelligence, 60, 1-15.
+ * **BaseSBO**: The developed version
+* **SHO - Spotted Hyena Optimizer**
+ * **OriginalSHO**: Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48-70.
+* **SSO - Salp Swarm Optimization**
+ * **OriginalSSO**: Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
+* **SFO - Sailfish Optimizer**
+ * **OriginalSFO**: Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, 20-34.
+ * **ImprovedSFO**: Li, L.L., Shen, Q., Tseng, M.L. and Luo, S., 2021. Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish algorithm. Journal of Cleaner Production, 316, p.128318.
+* **SARO - Search And Rescue Optimization**
+ * **OriginalSARO**: Shabani, A., Asgarian, B., Gharebaghi, S. A., Salido, M. A., & Giret, A. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering, 2019.
+ * **BaseSARO**: The developed version using Levy-flight
+* **SSDO - Social Ski-Driver Optimization**
+ * **OriginalSSDO**: Tharwat, A., & Gabel, T. (2019). Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications, 1-14.
+* **SLO - Sea Lion Optimization**
+ * **OriginalSLO**: Masadeh, R., Mahafzah, B. A., & Sharieh, A. (2019). Sea Lion Optimization Algorithm. Sea, 10(5).
+ * **ImprovedSLO**: The developed version
+ * **ModifiedSLO**: Masadeh, R., Alsharman, N., Sharieh, A., Mahafzah, B.A. and Abdulrahman, A., 2021. Task scheduling on cloud computing based on sea lion optimization algorithm. International Journal of Web Information Systems.
+* **Seagull Optimization Algorithm**
+ * **OriginalSOA**: Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-based systems, 165, 169-196.
+ * **DevSOA**: The developed version
+* **SMA - Slime Mould Algorithm**
+ * **OriginalSMA**: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
+ * **BaseSMA**: The developed version
+* **SSA - Sparrow Search Algorithm**
+ * **OriginalSSA**: Jiankai Xue & Bo Shen (2020) A novel swarm intelligence optimization approach: sparrow search algorithm, Systems Science & Control Engineering, 8:1, 22-34, DOI: 10.1080/21642583.2019.1708830
+ * **BaseSSA**: The developed version
+* **SPBO - Student Psychology Based Optimization**
+ * **OriginalSPBO**: Das, B., Mukherjee, V., & Das, D. (2020). Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems. Advances in Engineering software, 146, 102804.
+ * **DevSPBO**: The developed version
+* **SCSO - Sand Cat Swarm Optimization**
+ * **OriginalSCSO**: Seyyedabbasi, A., & Kiani, F. (2022). Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Engineering with Computers, 1-25.
+### T
+* **TLO - Teaching Learning Optimization**
+ * **OriginalTLO**: Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.
+ * **BaseTLO**: Rao, R., & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations, 3(4), 535-560.
+ * **ImprovedTLO**: Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710-720.
+* **TWO - Tug of War Optimization**
+ * **OriginalTWO**: Kaveh, A., & Zolghadr, A. (2016). A novel meta-heuristic algorithm: tug of war optimization. Iran University of Science & Technology, 6(4), 469-492.
+ * **OppoTWO**: Kaveh, A., Almasi, P. and Khodagholi, A., 2022. Optimum Design of Castellated Beams Using Four Recently Developed Meta-heuristic Algorithms. Iranian Journal of Science and Technology, Transactions of Civil Engineering, pp.1-13.
+ * **LevyTWO**: The developed version using Levy-flight
+ * **ImprovedTWO**: Nguyen, T., Hoang, B., Nguyen, G., & Nguyen, B. M. (2020). A new workload prediction model using extreme learning machine and enhanced tug of war optimization. Procedia Computer Science, 170, 362-369.
+* **TSA - Tunicate Swarm Algorithm**
+ * **OriginalTSA**: Kaur, S., Awasthi, L. K., Sangal, A. L., & Dhiman, G. (2020). Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence, 90, 103541.
+* **TSO - Tuna Swarm Optimization**
+ * **OriginalTSO**: Xie, L., Han, T., Zhou, H., Zhang, Z. R., Han, B., & Tang, A. (2021). Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Computational intelligence and Neuroscience, 2021.
+### U
+### V
+* **VCS - Virus Colony Search**
+ * **OriginalVCS**: Li, M. D., Zhao, H., Weng, X. W., & Han, T. (2016). A novel nature-inspired algorithm for optimization: Virus colony search. Advances in Engineering Software, 92, 65-88.
+ * **BaseVCS**: The developed version
+### W
+* **WCA - Water Cycle Algorithm**
+ * **OriginalWCA**: Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151-166.
+* **WOA - Whale Optimization Algorithm**
+ * **OriginalWOA**: Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
+ * **HI_WOA**: Tang, C., Sun, W., Wu, W., & Xue, M. (2019, July). A hybrid improved whale optimization algorithm. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 362-367). IEEE.
+* **WHO - Wildebeest Herd Optimization**
+ * **OriginalWHO**: Amali, D., & Dinakaran, M. (2019). Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-14.
+* **WDO - Wind Driven Optimization**
+ * **OriginalWDO**: Bayraktar, Z., Komurcu, M., Bossard, J.A. and Werner, D.H., 2013. The wind driven optimization technique and its application in electromagnetics. IEEE transactions on antennas and propagation, 61(5), pp.2745-2757.
+### X
+### Y
+### Z
+
+%package -n python3-mealpy
+Summary: MEALPY: An Open-source Library for Latest Meta-heuristic Algorithms in Python
+Provides: python-mealpy
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-mealpy
+[![GitHub release](https://img.shields.io/badge/release-2.5.3-yellow.svg)](https://github.com/thieu1995/mealpy/releases)
+[![Wheel](https://img.shields.io/pypi/wheel/gensim.svg)](https://pypi.python.org/pypi/mealpy)
+[![PyPI version](https://badge.fury.io/py/mealpy.svg)](https://badge.fury.io/py/mealpy)
+![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mealpy.svg)
+![PyPI - Status](https://img.shields.io/pypi/status/mealpy.svg)
+![PyPI - Downloads](https://img.shields.io/pypi/dm/mealpy.svg)
+[![Downloads](https://pepy.tech/badge/mealpy)](https://pepy.tech/project/mealpy)
+[![Tests & Publishes to PyPI](https://github.com/thieu1995/mealpy/actions/workflows/publish-package.yaml/badge.svg)](https://github.com/thieu1995/mealpy/actions/workflows/publish-package.yaml)
+![GitHub Release Date](https://img.shields.io/github/release-date/thieu1995/mealpy.svg)
+[![Documentation Status](https://readthedocs.org/projects/mealpy/badge/?version=latest)](https://mealpy.readthedocs.io/en/latest/?badge=latest)
+[![Chat](https://img.shields.io/badge/Chat-on%20Telegram-blue)](https://t.me/+fRVCJGuGJg1mNDg1)
+[![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/thieu1995/mealpy.svg)](http://isitmaintained.com/project/thieu1995/mealpy "Average time to resolve an issue")
+[![Percentage of issues still open](http://isitmaintained.com/badge/open/thieu1995/mealpy.svg)](http://isitmaintained.com/project/thieu1995/mealpy "Percentage of issues still open")
+![GitHub contributors](https://img.shields.io/github/contributors/thieu1995/mealpy.svg)
+[![GitTutorial](https://img.shields.io/badge/PR-Welcome-%23FF8300.svg?)](https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3711948.svg)](https://doi.org/10.5281/zenodo.3711948)
+[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
+MEALPY is the largest python library for most of the cutting-edge nature-inspired meta-heuristic algorithms (population-based). Population meta-heuristic algorithms (PMA) are the most popular algorithms in the field of
+approximate optimization.
+* **Free software:** GNU General Public License (GPL) V3 license
+* **Total algorithms**: 174 (102 original, 45 official variants, 27 developed variants)
+* **Documentation:** https://mealpy.readthedocs.io/en/latest/
+* **Python versions:** 3.7.x, 3.8.x, 3.9.x, 3.10.x, 3.11.x
+* **Dependencies:** numpy, scipy, pandas, matplotlib
+# Goals
+Our goals are to implement all of the classical as well as the state-of-the-art nature-inspired algorithms, create a simple interface that helps researchers access optimization algorithms as quickly as possible, and share knowledge of the optimization field with everyone without a fee. What you can do with mealpy:
+- Analyse parameters of meta-heuristic algorithms.
+- Perform Qualitative and Quantitative Analysis of algorithms.
+- Analyse rate of convergence of algorithms.
+- Test and Analyse the scalability and the robustness of algorithms.
+- Save results in various formats (csv, json, pickle, png, pdf, jpeg)
+- Export and import models can also be done with Mealpy.
+# Installation
+### Install with pip
+Install the [current PyPI release](https://pypi.python.org/pypi/mealpy):
+```sh
+$ pip install mealpy==2.5.3
+```
+### Install from source
+In case you want to install directly from the source code, use:
+```sh
+$ git clone https://github.com/thieu1995/mealpy.git
+$ cd mealpy
+$ python setup.py install
+```
+# Usage
+After installation, you can import Mealpy as any other Python module:
+```sh
+$ python
+>>> import mealpy
+>>> mealpy.__version__
+```
+Let's go through a basic and advanced example.
+## Examples
+### Simple Benchmark Function
+```python
+from mealpy.bio_based import SMA
+import numpy as np
+def fitness_function(solution):
+ return np.sum(solution**2)
+problem = {
+ "fit_func": fitness_function,
+ "lb": [-100, ] * 30,
+ "ub": [100, ] * 30,
+ "minmax": "min",
+ "log_to": None,
+ "save_population": False,
+}
+## Run the algorithm
+model = SMA.BaseSMA(epoch=100, pop_size=50, pr=0.03)
+best_position, best_fitness = model.solve(problem)
+print(f"Best solution: {best_position}, Best fitness: {best_fitness}")
+```
+### Constrained Benchmark Function
+* [The Constrained Benchmark Function](https://github.com/thieu1995/mealpy/tree/master/examples/applications/run_constraint_functions.py)
+### Multi-objective Benchmark Function
+* [Multi-objective benchmark functions](https://github.com/thieu1995/mealpy/tree/master/examples/applications/run_multi_objective_functions.py)
+### Custom Problem
+For our custom problem, we can create a class and inherit from the Problem class, named the child class the
+'Squared' class. In the initialization method of the 'Squared' class, we have to set the *lb*, *ub*, and *minmax*
+of the problem (lb: a list of lower bound values, ub: a list of upper bound values, and minmax: a string specifying
+whether the problem is a 'min' or 'max' problem).
+Afterwards, we have to override the abstract method 'fit_func()', which takes a parameter 'solution' (the solution
+to be evaluated) and returns the function value. The resulting code should look something like the code snippet
+below. 'Name' is an additional parameter we want to include in this class, and you can include any other additional
+parameters you need.
+```python
+import numpy as np
+from mealpy.bio_based import BBO
+from mealpy.utils.problem import Problem
+# Our custom problem class
+class Squared(Problem):
+ def __init__(self, lb=(-5, -5, -5, -5, -5, -5), ub=(5, 5, 5, 5, 5, 5), minmax="min", name="Squared", **kwargs):
+ super().__init__(lb, ub, minmax, **kwargs)
+ self.name = name
+ def fit_func(self, solution):
+ return np.sum(solution ** 2)
+```
+Now, we define an algorithm, and pass an instance of our *Squared* class as the problem argument.
+```python
+problem = Squared(lb=[-10] * 20, ub=[10] * 20, minmax="min")
+model = BBO.BaseBBO(epoch=10, pop_size=50)
+best_position, best_fitness = model.solve(problem)
+print(best_position)
+print(best_fitness)
+print(model.get_parameters())
+print(model.get_name())
+print(model.get_attributes()["solution"])
+print(model.problem.get_name())
+print(model.problem.n_dims)
+```
+### Tuner class (GridSearchCV/ParameterSearch, Hyper-parameter tuning)
+We build a dedicated class, Tuner, that can help you tune your algorithm's parameters.
+```python
+import numpy as np
+from mealpy.bio_based import BBO
+from mealpy.tuner import Tuner # Remember this
+def fitness(solution):
+ return np.sum(solution**2)
+problem = {
+ "lb": [-100, ]*50,
+ "ub": [100, ]*50,
+ "minmax": "min",
+ "fit_func": fitness,
+ "name": "Squared Problem",
+ "log_to": None,
+}
+paras_bbo_grid = {
+ "epoch": [100],
+ "pop_size": [50],
+ "elites": [2, 3, 4, 5],
+ "p_m": [0.01, 0.02, 0.05, 0.1, 0.15, 0.2]
+}
+term = {
+ "max_fe": 10000
+}
+if __name__ == "__main__":
+ model = BBO.BaseBBO()
+ tuner = Tuner(model, paras_bbo_grid)
+ tuner.execute(problem=problem, termination=term, n_trials=5, n_jobs=5, mode="thread", n_workers=4, verbose=True)
+ ## Solve this problem 5 times (n_trials) using 5 processes (n_jobs), each process will handle 1 trial.
+ ## The mode to run the solver is thread (mode), we will calculate the fitness of 4 solutions (n_workers) at the same time
+ print(tuner.best_score)
+ print(tuner.best_params)
+ print(tuner.best_algorithm)
+ print(tuner.best_algorithm.get_name())
+ ## Save results to csv file
+ tuner.export_results(save_path="history/tuning", save_as="csv")
+ ## Re-solve the best model on your problem
+ best_position, best_fitness = tuner.resolve()
+ print(best_position, best_fitness)
+ print(tuner.problem.get_name())
+```
+### Multitask class (Multitask solving)
+We also build a dedicated class, Multitask, that can help you run several scenarios. For example:
+1. Run 1 algorithm with 1 problem, and multiple trials
+2. Run 1 algorithm with multiple problems, and multiple trials
+3. Run multiple algorithms with 1 problem, and multiple trials
+4. Run multiple algorithms with multiple problems, and multiple trials
+```python
+#### Using multiple algorithm to solve multiple problems with multiple trials
+## Import libraries
+## For example, we want to solve F5, F10, F29 problem in CEC-2017
+from opfunu.cec_based.cec2017 import F52017, F102017, F292017
+from mealpy.bio_based import BBO
+from mealpy.evolutionary_based import DE
+from mealpy.multitask import Multitask # Remember this
+## You can define your own problems
+f1 = F52017(30, f_bias=0)
+f2 = F102017(30, f_bias=0)
+f3 = F292017(30, f_bias=0)
+p1 = {
+ "lb": f1.lb.tolist(),
+ "ub": f1.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f1.evaluate,
+ "name": "F5-CEC2017",
+ "log_to": None,
+}
+p2 = {
+ "lb": f2.lb.tolist(),
+ "ub": f2.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f2.evaluate,
+ "name": "F10-CEC2017",
+ "log_to": None,
+}
+p3 = {
+ "lb": f3.lb.tolist(),
+ "ub": f3.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f3.evaluate,
+ "name": "F29-CEC2017",
+ "log_to": None,
+}
+## Define models
+model1 = BBO.BaseBBO(epoch=10, pop_size=50)
+model2 = BBO.OriginalBBO(epoch=10, pop_size=50)
+model3 = DE.BaseDE(epoch=10, pop_size=50)
+## Define termination if needed
+term = {
+ "max_fe": 10000
+}
+## Define and run Multitask
+if __name__ == "__main__":
+ multitask = Multitask(algorithms=(model1, model2, model3), problems=(p1, p2, p3), terminations=(term, ), modes=("thread", ))
+ # default modes = "single", default termination = epoch (as defined in problem dictionary)
+ multitask.execute(n_trials=5, n_jobs=5, save_path="history", save_as="csv", save_convergence=False, verbose=False)
+ ## Check the directory: history/, you will see list of .csv result files
+```
+For more usage examples please look at [examples](/examples) folder.
+More advanced examples can also be found in the [Mealpy-examples repository](https://github.com/thieu1995/mealpy_examples).
+### Get Visualize Figures
+* [Tutorials](/examples/utils/visualize/all_charts.py)
+<p align="center"><img src="https://thieu1995.github.io/post/2022-04/19-mealpy-tutorials/mealpy2.png" alt="MEALPY"/>
+</p>
+## Mealpy Application
+### Mealpy + Neural Network (Replace the Gradient Descent Optimizer)
+* Time-series Problem:
+ * Traditional MLP
+ code: [Link](https://github.com/thieu1995/mealpy/tree/master/examples/applications/keras/traditional-mlp-time-series.py)
+ * Hybrid code (Mealpy +
+ MLP): [Link](https://github.com/thieu1995/mealpy/tree/master/examples/applications/keras/mha-hybrid-mlp-time-series.py)
+* Classification Problem:
+ * Traditional MLP
+ code: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/traditional-mlp-classification.py)
+ * Hybrid code (Mealpy +
+ MLP): [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/mha-hybrid-mlp-classification.py)
+### Mealpy + Neural Network (Optimize Neural Network Hyper-parameter)
+Code: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/mha-hyper-parameter-mlp-time-series.py)
+### Other Applications
+* Solving Knapsack Problem (Discrete
+ problems): [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/discrete-problems/knapsack-problem.py)
+* Optimize SVM (SVC)
+ model: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/sklearn/svm_classification.py)
+* Optimize Linear Regression
+ Model: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/pytorch/linear_regression.py)
+* Travelling Salesman Problem: https://github.com/thieu1995/MHA-TSP
+* Feature selection problem: https://github.com/thieu1995/MHA-FS
+## Tutorial Videos
+All tutorial videos: [Link](https://mealpy.readthedocs.io/en/latest/pages/general/video_tutorials.html)
+All code examples: [Link](https://github.com/thieu1995/mealpy/tree/master/examples)
+All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages/visualization.html)
+### Get helps (questions, problems)
+* Official source code repo: https://github.com/thieu1995/mealpy
+* Official document: https://mealpy.readthedocs.io/
+* Download releases: https://pypi.org/project/mealpy/
+* Issue tracker: https://github.com/thieu1995/mealpy/issues
+* Notable changes log: https://github.com/thieu1995/mealpy/blob/master/ChangeLog.md
+* Examples with different meapy version: https://github.com/thieu1995/mealpy/blob/master/EXAMPLES.md
+* This project also related to our another projects which are "meta-heuristics" and "neural-network", check it here
+ * https://github.com/thieu1995/opfunu
+ * https://github.com/thieu1995/metaheuristics
+ * https://github.com/aiir-team
+**Want to have an instant assistant? Join our telegram community at [link](https://t.me/+fRVCJGuGJg1mNDg1)**
+We share lots of information, questions, and answers there. You will get more support and knowledge there.
+### Cite Us
+If you are using mealpy in your project, we would appreciate citations:
+```bibtex
+@article{van2023mealpy,
+ title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
+ author={Van Thieu, Nguyen and Mirjalili, Seyedali},
+ journal={Journal of Systems Architecture},
+ year={2023},
+ publisher={Elsevier}
+}
+@article{van2023groundwater,
+ title={Groundwater level modeling using Augmented Artificial Ecosystem Optimization},
+ author={Van Thieu, Nguyen and Barma, Surajit Deb and Van Lam, To and Kisi, Ozgur and Mahesha, Amai},
+ journal={Journal of Hydrology},
+ volume={617},
+ pages={129034},
+ year={2023},
+ publisher={Elsevier}
+}
+```
+# List of papers used MEALPY
+- Min, J., Oh, M., Kim, W., Seo, H., & Paek, J. (2022, October). Evaluation of Metaheuristic Algorithms for TAS Scheduling in Time-Sensitive Networking. In 2022 13th International Conference on Information and Communication Technology Convergence (ICTC) (pp. 809-812). IEEE.
+- Khozeimeh, F., Sharifrazi, D., Izadi, N. H., Joloudari, J. H., Shoeibi, A., Alizadehsani, R., ... & Islam, S. M. S. (2021). Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Scientific Reports, 11(1), 15343.
+- Rajesh, K., Jain, E., & Kotecha, P. (2022). A Multi-Objective approach to the Electric Vehicle Routing Problem. arXiv preprint arXiv:2208.12440.
+- Sánchez, A. J. H., & Upegui, F. R. (2022). Una herramienta para el diseño de redes MSMN de banda ancha en líneas de transmisión basada en algoritmos heurísticos de optimización comparados. Revista Ingeniería UC, 29(2), 106-123.
+- Khanmohammadi, M., Armaghani, D. J., & Sabri Sabri, M. M. (2022). Prediction and Optimization of Pile Bearing Capacity Considering Effects of Time. Mathematics, 10(19), 3563.
+- Kudela, J. (2023). The Evolutionary Computation Methods No One Should Use. arXiv preprint arXiv:2301.01984.
+- Vieira, M., Faia, R., Pinto, T., & Vale, Z. (2022, September). Schedule Peer-to-Peer Transactions of an Energy Community Using Particle Swarm. In 2022 18th International Conference on the European Energy Market (EEM) (pp. 1-6). IEEE.
+- Bui, X. N., Nguyen, H., Le, Q. T., & Le, T. N. Forecasting PM. MINING SCIENCE ANDTECHNOLOGY (Russia), 111.
+- Bui, X. N., Nguyen, H., Le, Q. T., & Le, T. N. (2022). Forecasting PM 2.5 emissions in open-pit minesusing a functional link neural network optimized by various optimization algorithms. Gornye nauki i tekhnologii= Mining Science and Technology (Russia), 7(2), 111-125.
+- Doğan, E., & Yörükeren, N. (2022). Enhancement of Transmission System Security with Archimedes Optimization Algorithm.
+- Ayub, N., Aurangzeb, K., Awais, M., & Ali, U. (2020, November). Electricity theft detection using CNN-GRU and manta ray foraging optimization algorithm. In 2020 IEEE 23Rd international multitopic conference (INMIC) (pp. 1-6). IEEE.
+- Pintilie, L., Nechita, M. T., Suditu, G. D., Dafinescu, V., & Drăgoi, E. N. (2022). Photo-decolorization of Eriochrome Black T: process optimization with Differential Evolution algorithm. In PASEW-22, MESSH-22 & CABES-22 April 19–21, 2022 Paris (France). Eminent Association of Pioneers.
+- LaTorre, A., Molina, D., Osaba, E., Poyatos, J., Del Ser, J., & Herrera, F. (2021). A prescription of methodological guidelines for comparing bio-inspired optimization algorithms. Swarm and Evolutionary Computation, 67, 100973.
+- Gottam, S., Nanda, S. J., & Maddila, R. K. (2021, December). A CNN-LSTM Model Trained with Grey Wolf Optimizer for Prediction of Household Power Consumption. In 2021 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS) (pp. 355-360). IEEE.
+- Darius, P. S., Devadason, J., & Solomon, D. G. (2022, December). Prospects of Ant Colony Optimization (ACO) in Various Domains. In 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C) (pp. 79-84). IEEE.
+- Ayub, N., Irfan, M., Awais, M., Ali, U., Ali, T., Hamdi, M., ... & Muhammad, F. (2020). Big data analytics for short and medium-term electricity load forecasting using an AI techniques ensembler. Energies, 13(19), 5193.
+- Biundini, I. Z., Melo, A. G., Coelho, F. O., Honório, L. M., Marcato, A. L., & Pinto, M. F. (2022). Experimentation and Simulation with Autonomous Coverage Path Planning for UAVs. Journal of Intelligent & Robotic Systems, 105(2), 46.
+- Yousaf, I., Anwar, F., Imtiaz, S., Almadhor, A. S., Ishmanov, F., & Kim, S. W. (2022). An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer’s-Based IoT System. Computational Intelligence and Neuroscience, 2022.
+- Xu, L., Yan, W., & Ji, J. (2023). The research of a novel WOG-YOLO algorithm for autonomous driving object detection. Scientific reports, 13(1), 3699.
+- Costache, R. D., Arabameri, A., Islam, A. R. M. T., Abba, S. I., Pandey, M., Ajin, R. S., & Pham, B. T. (2022). Flood susceptibility computation using state-of-the-art machine learning and optimization algorithms.
+- Del Ser, J., Osaba, E., Martinez, A. D., Bilbao, M. N., Poyatos, J., Molina, D., & Herrera, F. (2021, December). More is not always better: insights from a massive comparison of meta-heuristic algorithms over real-parameter optimization problems. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-7). IEEE.
+- Rustam, F., Aslam, N., De La Torre Díez, I., Khan, Y. D., Mazón, J. L. V., Rodríguez, C. L., & Ashraf, I. (2022, November). White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images. In Healthcare (Vol. 10, No. 11, p. 2230). MDPI.
+- Neupane, D., Kafle, S., Gurung, S., Neupane, S., & Bhattarai, N. (2021). Optimal sizing and financial analysis of a stand-alone SPV-micro-hydropower hybrid system considering generation uncertainty. International Journal of Low-Carbon Technologies, 16(4), 1479-1491.
+- Liang, R., Le-Hung, T., & Nguyen-Thoi, T. (2022). Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model. Journal of Building Engineering, 59, 105087.
+- He, Z., Nguyen, H., Vu, T. H., Zhou, J., Asteris, P. G., & Mammou, A. (2022). Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm-and evolution-based algorithms. Acta Geotechnica, 1-16.
+- Xu, L., Yan, W., & Ji, J. (2022). The research of a novel WOG-YOLO algorithm forautonomous driving object detection.
+- Nasir Ayub, M. I., Awais, M., Ali, U., Ali, T., Hamdi, M., Alghamdi, A., & Muhammad, F. Big Data Analytics for Short and Medium Term Electricity Load Forecasting using AI Techniques Ensembler.
+- Xie, C., Nguyen, H., Choi, Y., & Armaghani, D. J. (2022). Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays. Geoscience Frontiers, 13(2), 101313.
+- Hakemi, S., Houshmand, M., & Hosseini, S. A. (2022). A Dynamic Quantum-Inspired Genetic Algorithm with Lengthening Chromosome Size.
+- Kashifi, M. T. City-Wide Crash Risk Prediction and Interpretation Using Deep Learning Model with Multi-Source Big Data. Available at SSRN 4329686.
+- Nguyen, H., & Hoang, N. D. (2022). Computer vision-based classification of concrete spall severity using metaheuristic-optimized Extreme Gradient Boosting Machine and Deep Convolutional Neural Network. Automation in Construction, 140, 104371.
+- Zheng, J., Lu, Z., Wu, K., Ning, G. H., & Li, D. (2020). Coinage-metal-based cyclic trinuclear complexes with metal–metal interactions: Theories to experiments and structures to functions. Chemical Reviews, 120(17), 9675-9742.
+- Van Thieu, N., Barma, S. D., Van Lam, T., Kisi, O., & Mahesha, A. (2023). Groundwater level modeling using Augmented Artificial Ecosystem Optimization. Journal of Hydrology, 617, 129034.
+- Mo, Z., Zhang, Z., Miao, Q., & Tsui, K. L. (2022). Intelligent Informative Frequency Band Searching Assisted by a Dynamic Bandit Tree Method for Machine Fault Diagnosis. IEEE/ASME Transactions on Mechatronics.
+- Dangi, D., Chandel, S. T., Dixit, D. K., Sharma, S., & Bhagat, A. (2023). An Efficient Model for Sentiment Analysis using Artificial Rabbits Optimized Vector Functional Link Network. Expert Systems with Applications, 119849.
+- Dey, S., Roychoudhury, R., Malakar, S., & Sarkar, R. (2022). An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images. Applied Soft Computing, 114, 108094.
+- Mousavirad, S. J., & Alexandre, L. A. (2022). Population-based JPEG Image Compression: Problem Re-Formulation. arXiv preprint arXiv:2212.06313.
+- Tsui, K. L. Intelligent Informative Frequency Band Searching Assisted by A Dynamic Bandit Tree Method for Machine Fault Diagnosis.
+- Neupane, D. (2020). Optimal Sizing and Performance Analysis of Solar PV-Micro hydropower Hybrid System in the Context of Rural Area of Nepal (Doctoral dissertation, Pulchowk Campus).
+- LaTorre, A., Molina, D., Osaba, E., Poyatos, J., Del Ser, J., & Herrera, F. Swarm and Evolutionary Computation.
+- Vieira, M. A. (2022). Otimização dos custos operacionais de uma comunidade energética considerando transações locais em “peer-to-peer” (Doctoral dissertation).
+- Toğaçar, M. (2022). Using DarkNet models and metaheuristic optimization methods together to detect weeds growing along with seedlings. Ecological Informatics, 68, 101519.
+- Toğaçar, M. (2021). Detection of segmented uterine cancer images by Hotspot Detection method using deep learning models, Pigeon-Inspired Optimization, types-based dominant activation selection approaches. Computers in Biology and Medicine, 136, 104659.
+- Khan, N. A Short Term Electricity Load and Price Forecasting Model Based on BAT Algorithm in Logistic Regression and CNN-GRU with WOA.
+- Yelisetti, S., Saini, V. K., Kumar, R., & Lamba, R. (2022, May). Energy Consumption Cost Benefits through Smart Home Energy Management in Residential Buildings: An Indian Case Study. In 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET) (pp. 930-935). IEEE.
+- Nguyen, H., Cao, M. T., Tran, X. L., Tran, T. H., & Hoang, N. D. (2022). A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles. Neural Computing and Applications, 1-28.
+- Hirsching, C., de Jongh, S., Eser, D., Suriyah, M., & Leibfried, T. (2022). Meta-heuristic optimization of control structure and design for MMC-HVdc applications. Electric Power Systems Research, 213, 108371.
+- Amelin, V., Gatiyatullin, E., Romanov, N., Samarkhanov, R., Vasilyev, R., & Yanovich, Y. (2022). Black-Box for Blockchain Parameters Adjustment. IEEE Access, 10, 101795-101802.
+- Ngo, T. Q., Nguyen, L. Q., & Tran, V. Q. (2022). Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime. International Journal of Pavement Engineering, 1-18.
+- Zhu, Y., & Iiduka, H. (2021). Unified Algorithm Framework for Nonconvex Stochastic Optimization in Deep Neural Networks. IEEE Access, 9, 143807-143823.
+- Hakemi, S., Houshmand, M., KheirKhah, E., & Hosseini, S. A. (2022). A review of recent advances in quantum-inspired metaheuristics. Evolutionary Intelligence, 1-16.
+- Das, A., Das, S. R., Panda, J. P., Dey, A., Gajrani, K. K., Somani, N., & Gupta, N. (2022). Machine learning based modelling and optimization in hard turning of AISI D6 steel with newly developed AlTiSiN coated carbide tool. arXiv preprint arXiv:2202.00596.
+- Yelisetti, S., Saini, V. K., Kumar, R., Lamba, R., & Saxena, A. (2022). Optimal energy management system for residential buildings considering the time of use price with swarm intelligence algorithms. Journal of Building Engineering, 59, 105062.
+- Valdés, G. T. (2022). Algoritmo para la detección de vehículos y peatones combinando CNN´ sy técnicas de búsqueda.
+- Sallam, N. M., Saleh, A. I., Ali, H. A., & Abdelsalam, M. M. (2023). An efficient EGWO algorithm as feature selection for B-ALL diagnoses and its subtypes classification using peripheral blood smear images. Alexandria Engineering Journal, 68, 39-66.
+# Documents
+* Meta-heuristic Categories: (Based on this article: [link](https://doi.org/10.1016/j.procs.2020.09.075))
+ + Evolutionary-based: Idea from Darwin's law of natural selection, evolutionary computing
+ + Swarm-based: Idea from movement, interaction of birds, organization of social ...
+ + Physics-based: Idea from physics law such as Newton's law of universal gravitation, black hole, multiverse
+ + Human-based: Idea from human interaction such as queuing search, teaching learning, ...
+ + Biology-based: Idea from biology creature (or microorganism),...
+ + System-based: Idea from eco-system, immune-system, network-system, ...
+ + Math-based: Idea from mathematical form or mathematical law such as sin-cosin
+ + Music-based: Idea from music instrument
+* Difficulty - Difficulty Level (Personal Opinion): **Objective observation from author**. Depend on the number of
+ parameters, number of equations, the original ideas, time spend for coding, source lines of code (SLOC).
+ + Easy: A few paras, few equations, SLOC very short
+ + Medium: more equations than Easy level, SLOC longer than Easy level
+ + Hard: Lots of equations, SLOC longer than Medium level, the paper hard to read.
+ + Hard* - Very hard: Lots of equations, SLOC too long, the paper is very hard to read.
+** For newbie, we recommend to read the paper of algorithms which difficulty is "easy" or "medium" difficulty level.
+| **Group** | **Name** | **Module** | **Class** | **Year** | **Paras** | **Difficulty** |
+|--------------|-------------------------------------------------|------------|------------------|----------|-----------|----------------|
+| Evolutionary | Evolutionary Programming | EP | OriginalEP | 1964 | 3 | easy |
+| Evolutionary | - | - | LevyEP | - | 3 | easy |
+| Evolutionary | Evolution Strategies | ES | OriginalES | 1971 | 3 | easy |
+| Evolutionary | - | - | LevyES | - | 3 | easy |
+| Evolutionary | Memetic Algorithm | MA | OriginalMA | 1989 | 7 | easy |
+| Evolutionary | Genetic Algorithm | GA | BaseGA | 1992 | 4 | easy |
+| Evolutionary | - | - | SingleGA | - | 7 | easy |
+| Evolutionary | - | - | MultiGA | - | 7 | easy |
+| Evolutionary | - | - | EliteSingleGA | - | 10 | easy |
+| Evolutionary | - | - | EliteMultiGA | - | 10 | easy |
+| Evolutionary | Differential Evolution | DE | BaseDE | 1997 | 5 | easy |
+| Evolutionary | - | - | JADE | 2009 | 6 | medium |
+| Evolutionary | - | - | SADE | 2005 | 2 | medium |
+| Evolutionary | - | - | SHADE | 2013 | 4 | medium |
+| Evolutionary | - | - | L_SHADE | 2014 | 4 | medium |
+| Evolutionary | - | - | SAP_DE | 2006 | 3 | medium |
+| Evolutionary | Flower Pollination Algorithm | FPA | OriginalFPA | 2014 | 4 | medium |
+| Evolutionary | Coral Reefs Optimization | CRO | OriginalCRO | 2014 | 11 | medium |
+| Evolutionary | - | - | OCRO | 2019 | 12 | medium |
+| - | - | - | - | - | - | - |
+| Swarm | Particle Swarm Optimization | PSO | OriginalPSO | 1995 | 6 | easy |
+| Swarm | - | - | PPSO | 2019 | 2 | medium |
+| Swarm | - | - | HPSO_TVAC | 2017 | 4 | medium |
+| Swarm | - | - | C_PSO | 2015 | 6 | medium |
+| Swarm | - | - | CL_PSO | 2006 | 6 | medium |
+| Swarm | Bacterial Foraging Optimization | BFO | OriginalBFO | 2002 | 10 | hard |
+| Swarm | - | - | ABFO | 2019 | 8 | medium |
+| Swarm | Bees Algorithm | BeesA | OriginalBeesA | 2005 | 8 | medium |
+| Swarm | - | - | ProbBeesA | 2015 | 5 | medium |
+| Swarm | Cat Swarm Optimization | CSO | OriginalCSO | 2006 | 11 | hard |
+| Swarm | Artificial Bee Colony | ABC | OriginalABC | 2007 | 8 | medium |
+| Swarm | Ant Colony Optimization | ACO-R | OriginalACOR | 2008 | 5 | easy |
+| Swarm | Cuckoo Search Algorithm | CSA | OriginalCSA | 2009 | 3 | medium |
+| Swarm | Firefly Algorithm | FFA | OriginalFFA | 2009 | 8 | easy |
+| Swarm | Fireworks Algorithm | FA | OriginalFA | 2010 | 7 | medium |
+| Swarm | Bat Algorithm | BA | OriginalBA | 2010 | 6 | medium |
+| Swarm | - | - | AdaptiveBA | - | 8 | medium |
+| Swarm | - | - | ModifiedBA | - | 5 | medium |
+| Swarm | Fruit-fly Optimization Algorithm | FOA | OriginalFOA | 2012 | 2 | easy |
+| Swarm | - | - | BaseFOA | - | 2 | easy |
+| Swarm | - | - | WhaleFOA | 2020 | 2 | medium |
+| Swarm | Social Spider Optimization | SSpiderO | OriginalSSpiderO | 2018 | 4 | hard* |
+| Swarm | Grey Wolf Optimizer | GWO | OriginalGWO | 2014 | 2 | easy |
+| Swarm | - | - | RW_GWO | 2019 | 2 | easy |
+| Swarm | Social Spider Algorithm | SSpiderA | OriginalSSpiderA | 2015 | 5 | medium |
+| Swarm | Ant Lion Optimizer | ALO | OriginalALO | 2015 | 2 | easy |
+| Swarm | - | - | BaseALO | - | 2 | easy |
+| Swarm | Moth Flame Optimization | MFO | OriginalMFO | 2015 | 2 | easy |
+| Swarm | - | - | BaseMFO | - | 2 | easy |
+| Swarm | Elephant Herding Optimization | EHO | OriginalEHO | 2015 | 5 | easy |
+| Swarm | Jaya Algorithm | JA | OriginalJA | 2016 | 2 | easy |
+| Swarm | - | - | BaseJA | - | 2 | easy |
+| Swarm | - | - | LevyJA | 2021 | 2 | easy |
+| Swarm | Whale Optimization Algorithm | WOA | OriginalWOA | 2016 | 2 | medium |
+| Swarm | - | - | HI_WOA | 2019 | 3 | medium |
+| Swarm | Dragonfly Optimization | DO | OriginalDO | 2016 | 2 | medium |
+| Swarm | Bird Swarm Algorithm | BSA | OriginalBSA | 2016 | 9 | medium |
+| Swarm | Spotted Hyena Optimizer | SHO | OriginalSHO | 2017 | 4 | medium |
+| Swarm | Salp Swarm Optimization | SSO | OriginalSSO | 2017 | 2 | easy |
+| Swarm | Swarm Robotics Search And Rescue | SRSR | OriginalSRSR | 2017 | 2 | hard* |
+| Swarm | Grasshopper Optimisation Algorithm | GOA | OriginalGOA | 2017 | 4 | easy |
+| Swarm | Coyote Optimization Algorithm | COA | OriginalCOA | 2018 | 3 | medium |
+| Swarm | Moth Search Algorithm | MSA | OriginalMSA | 2018 | 5 | easy |
+| Swarm | Sea Lion Optimization | SLO | OriginalSLO | 2019 | 2 | medium |
+| Swarm | - | - | ModifiedSLO | - | 2 | medium |
+| Swarm | - | - | ImprovedSLO | - | 4 | medium |
+| Swarm | Nake Mole-Rat Algorithm | NMRA | OriginalNMRA | 2019 | 3 | easy |
+| Swarm | - | - | ImprovedNMRA | - | 4 | medium |
+| Swarm | Pathfinder Algorithm | PFA | OriginalPFA | 2019 | 2 | medium |
+| Swarm | Sailfish Optimizer | SFO | OriginalSFO | 2019 | 5 | easy |
+| Swarm | - | - | ImprovedSFO | - | 3 | medium |
+| Swarm | Harris Hawks Optimization | HHO | OriginalHHO | 2019 | 2 | medium |
+| Swarm | Manta Ray Foraging Optimization | MRFO | OriginalMRFO | 2020 | 3 | medium |
+| Swarm | Bald Eagle Search | BES | OriginalBES | 2020 | 7 | easy |
+| Swarm | Sparrow Search Algorithm | SSA | OriginalSSA | 2020 | 5 | medium |
+| Swarm | - | - | BaseSSA | - | 5 | medium |
+| Swarm | Hunger Games Search | HGS | OriginalHGS | 2021 | 4 | medium |
+| Swarm | Aquila Optimizer | AO | OriginalAO | 2021 | 2 | easy |
+| Swarm | Hybrid Grey Wolf - Whale Optimization Algorithm | GWO | GWO_WOA | 2022 | 2 | easy |
+| Swarm | Marine Predators Algorithm | MPA | OriginalMPA | 2020 | 2 | medium |
+| Swarm | Honey Badger Algorithm | HBA | OriginalHBA | 2022 | 2 | easy |
+| Swarm | Sand Cat Swarm Optimization | SCSO | OriginalSCSO | 2022 | 2 | easy |
+| Swarm | Tuna Swarm Optimization | TSO | OriginalTSO | 2021 | 2 | medium |
+| Swarm | African Vultures Optimization Algorithm | AVOA | OriginalAVOA | 2022 | 7 | medium |
+| Swarm | Artificial Gorilla Troops Optimization | AGTO | OriginalAGTO | 2021 | 5 | medium |
+| Swarm | Artificial Rabbits Optimization | ARO | OriginalARO | 2022 | 2 | easy |
+| Swarm | Dwarf Mongoose Optimization Algorithm | DMOA | OriginalDMOA | 2022 | 4 | medium |
+| Swarm | - | - | DevDMOA | - | 3 | medium |
+| - | - | - | - | - | - | - |
+| Physics | Simulated Annealling | SA | OriginalSA | 1987 | 9 | medium |
+| Physics | Wind Driven Optimization | WDO | OriginalWDO | 2013 | 7 | easy |
+| Physics | Multi-Verse Optimizer | MVO | OriginalMVO | 2016 | 4 | easy |
+| Physics | - | - | BaseMVO | - | 4 | easy |
+| Physics | Tug of War Optimization | TWO | OriginalTWO | 2016 | 2 | easy |
+| Physics | - | - | OppoTWO | - | 2 | medium |
+| Physics | - | - | LevyTWO | - | 2 | medium |
+| Physics | - | - | EnhancedTWO | 2020 | 2 | medium |
+| Physics | Electromagnetic Field Optimization | EFO | OriginalEFO | 2016 | 6 | easy |
+| Physics | - | - | BaseEFO | - | 6 | medium |
+| Physics | Nuclear Reaction Optimization | NRO | OriginalNRO | 2019 | 2 | hard* |
+| Physics | Henry Gas Solubility Optimization | HGSO | OriginalHGSO | 2019 | 3 | medium |
+| Physics | Atom Search Optimization | ASO | OriginalASO | 2019 | 4 | medium |
+| Physics | Equilibrium Optimizer | EO | OriginalEO | 2019 | 2 | easy |
+| Physics | - | - | ModifiedEO | 2020 | 2 | medium |
+| Physics | - | - | AdaptiveEO | 2020 | 2 | medium |
+| Physics | Archimedes Optimization Algorithm | ArchOA | OriginalArchOA | 2021 | 8 | medium |
+| - | - | - | - | - | - | - |
+| Human | Culture Algorithm | CA | OriginalCA | 1994 | 3 | easy |
+| Human | Imperialist Competitive Algorithm | ICA | OriginalICA | 2007 | 8 | hard* |
+| Human | Teaching Learning-based Optimization | TLO | OriginalTLO | 2011 | 2 | easy |
+| Human | - | - | BaseTLO | 2012 | 2 | easy |
+| Human | - | - | ITLO | 2013 | 3 | medium |
+| Human | Brain Storm Optimization | BSO | OriginalBSO | 2011 | 8 | medium |
+| Human | - | - | ImprovedBSO | 2017 | 7 | medium |
+| Human | Queuing Search Algorithm | QSA | OriginalQSA | 2019 | 2 | hard |
+| Human | - | - | BaseQSA | - | 2 | hard |
+| Human | - | - | OppoQSA | - | 2 | hard |
+| Human | - | - | LevyQSA | - | 2 | hard |
+| Human | - | - | ImprovedQSA | 2021 | 2 | hard |
+| Human | Search And Rescue Optimization | SARO | OriginalSARO | 2019 | 4 | medium |
+| Human | - | - | BaseSARO | - | 4 | medium |
+| Human | Life Choice-Based Optimization | LCO | OriginalLCO | 2019 | 3 | easy |
+| Human | - | - | BaseLCO | - | 3 | easy |
+| Human | - | - | ImprovedLCO | - | 2 | easy |
+| Human | Social Ski-Driver Optimization | SSDO | OriginalSSDO | 2019 | 2 | easy |
+| Human | Gaining Sharing Knowledge-based Algorithm | GSKA | OriginalGSKA | 2019 | 6 | medium |
+| Human | - | - | BaseGSKA | - | 4 | medium |
+| Human | Coronavirus Herd Immunity Optimization | CHIO | OriginalCHIO | 2020 | 4 | medium |
+| Human | - | - | BaseCHIO | - | 4 | medium |
+| Human | Forensic-Based Investigation Optimization | FBIO | OriginalFBIO | 2020 | 2 | medium |
+| Human | - | - | BaseFBIO | - | 2 | medium |
+| Human | Battle Royale Optimization | BRO | OriginalBRO | 2020 | 3 | medium |
+| Human | - | - | BaseBRO | - | 3 | medium |
+| Human | Student Psychology Based Optimization | SPBO | OriginalSPBO | 2020 | 2 | medium |
+| Human | - | - | DevSPBO | | 2 | medium |
+| - | - | - | - | - | - | - |
+| Bio | Invasive Weed Optimization | IWO | OriginalIWO | 2006 | 7 | easy |
+| Bio | Biogeography-Based Optimization | BBO | OriginalBBO | 2008 | 4 | easy |
+| Bio | - | - | BaseBBO | - | 4 | easy |
+| Bio | Virus Colony Search | VCS | OriginalVCS | 2016 | 4 | hard* |
+| Bio | - | - | BaseVCS | - | 4 | hard* |
+| Bio | Satin Bowerbird Optimizer | SBO | OriginalSBO | 2017 | 5 | easy |
+| Bio | - | - | BaseSBO | - | 5 | easy |
+| Bio | Earthworm Optimisation Algorithm | EOA | OriginalEOA | 2018 | 8 | medium |
+| Bio | Wildebeest Herd Optimization | WHO | OriginalWHO | 2019 | 12 | hard |
+| Bio | Slime Mould Algorithm | SMA | OriginalSMA | 2020 | 3 | easy |
+| Bio | - | - | BaseSMA | - | 3 | easy |
+| Bio | Barnacles Mating Optimizer | BMO | OriginalBMO | 2018 | 3 | easy |
+| Bio | Tunicate Swarm Algorithm | TSA | OriginalTSA | 2020 | 2 | easy |
+| Bio | Symbiotic Organisms Search | SOS | OriginalSOS | 2014 | 2 | medium |
+| Bio | Seagull Optimization Algorithm | SOA | OriginalSOA | 2019 | 3 | easy |
+| Bio | - | - | DevSOA | - | 3 | easy |
+| - | - | - | - | - | - | - |
+| System | Germinal Center Optimization | GCO | OriginalGCO | 2018 | 4 | medium |
+| System | - | - | BaseGCO | - | 4 | medium |
+| System | Water Cycle Algorithm | WCA | OriginalWCA | 2012 | 5 | medium |
+| System | Artificial Ecosystem-based Optimization | AEO | OriginalAEO | 2019 | 2 | easy |
+| System | - | - | EnhancedAEO | 2020 | 2 | medium |
+| System | - | - | ModifiedAEO | 2020 | 2 | medium |
+| System | - | - | ImprovedAEO | 2021 | 2 | medium |
+| System | - | - | AugmentedAEO | 2022 | 2 | medium |
+| - | - | - | - | - | - | - |
+| Math | Hill Climbing | HC | OriginalHC | 1993 | 3 | easy |
+| Math | - | - | SwarmHC | - | 3 | easy |
+| Math | Cross-Entropy Method | CEM | OriginalCEM | 1997 | 4 | easy |
+| Math | Sine Cosine Algorithm | SCA | OriginalSCA | 2016 | 2 | easy |
+| Math | - | - | BaseSCA | - | 2 | easy |
+| Math | Gradient-Based Optimizer | GBO | OriginalGBO | 2020 | 5 | medium |
+| Math | Arithmetic Optimization Algorithm | AOA | OrginalAOA | 2021 | 6 | easy |
+| Math | Chaos Game Optimization | CGO | OriginalCGO | 2021 | 2 | easy |
+| Math | Pareto-like Sequential Sampling | PSS | OriginalPSS | 2021 | 4 | medium |
+| Math | weIghted meaN oF vectOrs | INFO | OriginalINFO | 2022 | 2 | medium |
+| Math | RUNge Kutta optimizer | RUN | OriginalRUN | 2021 | 2 | hard |
+| Math | Circle Search Algorithm | CircleSA | OriginalCircleSA | 2022 | 3 | easy |
+| - | - | - | - | - | - | - |
+| Music | Harmony Search | HS | OriginalHS | 2001 | 4 | easy |
+| Music | - | - | BaseHS | - | 4 | easy |
+### A
+* **ABC - Artificial Bee Colony**
+ * **OriginalABC**: Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
+* **ACOR - Ant Colony Optimization**.
+ * **OriginalACOR**: Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European journal of operational research, 185(3), 1155-1173.
+* **ALO - Ant Lion Optimizer**
+ * **OriginalALO**: Mirjalili S (2015). “The Ant Lion Optimizer.” Advances in Engineering Software, 83, 80-98. doi: [10.1016/j.advengsoft.2015.01.010](https://doi.org/10.1016/j.advengsoft.2015.01.010)
+ * **BaseALO**: The developed version
+* **AEO - Artificial Ecosystem-based Optimization**
+ * **OriginalAEO**: Zhao, W., Wang, L., & Zhang, Z. (2019). Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Computing and Applications, 1-43.
+ * **AugmentedAEO**: Van Thieu, N., Barma, S. D., Van Lam, T., Kisi, O., & Mahesha, A. (2022). Groundwater level modeling using Augmented Artificial Ecosystem Optimization. Journal of Hydrology, 129034.
+ * **ImprovedAEO**: Rizk-Allah, R. M., & El-Fergany, A. A. (2020). Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model. International Journal of Hydrogen Energy.
+ * **EnhancedAEO**: Eid, A., Kamel, S., Korashy, A., & Khurshaid, T. (2020). An Enhanced Artificial Ecosystem-Based Optimization for Optimal Allocation of Multiple Distributed Generations. IEEE Access, 8, 178493-178513.
+ * **ModifiedAEO**: Menesy, A. S., Sultan, H. M., Korashy, A., Banakhr, F. A., Ashmawy, M. G., & Kamel, S. (2020). Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access, 8, 31892-31909.
+* **ASO - Atom Search Optimization**
+ * **OriginalASO**: Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283-304.
+* **ArchOA - Archimedes Optimization Algorithm**
+ * **OriginalArchOA**: Hashim, F. A., Hussain, K., Houssein, E. H., Mabrouk, M. S., & Al-Atabany, W. (2021). Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 51(3), 1531-1551.
+* **AOA - Arithmetic Optimization Algorithm**
+ * **OriginalAOA**: Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609.
+* **AO - Aquila Optimizer**
+ * **OriginalAO**: Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A., & Gandomi, A. H. (2021). Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Computers & Industrial Engineering, 157, 107250.
+* **AVOA - African Vultures Optimization Algorithm**
+ * **OriginalAVOA**: Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.
+* **AGTO - Artificial Gorilla Troops Optimization**
+ * **OriginalAGTO**: Abdollahzadeh, B., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2021). Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems. International Journal of Intelligent Systems, 36(10), 5887-5958.
+* **ARO - Artificial Rabbits Optimization**:
+ * **OriginalARO**: Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W. (2022). Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 114, 105082.
+### B
+* **BFO - Bacterial Foraging Optimization**
+ * **OriginalBFO**: Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE control systems magazine, 22(3), 52-67.
+ * **ABFO**: Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019, April). Building resource auto-scaler with functional-link neural network and adaptive bacterial foraging optimization. In International Conference on Theory and Applications of Models of Computation (pp. 501-517). Springer, Cham.
+* **BeesA - Bees Algorithm**
+ * **OriginalBeesA**: Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2005). The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK.
+ * **ProbBeesA**: The probabilitic version of: Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454-459). Elsevier Science Ltd.
+* **BBO - Biogeography-Based Optimization**
+ * **OriginalBBO**: Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.
+ * **BaseBBO**: The developed version
+* **BA - Bat Algorithm**
+ * **OriginalBA**: Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg.
+ * **AdaptiveBA**: Wang, X., Wang, W. and Wang, Y., 2013, July. An adaptive bat algorithm. In International Conference on Intelligent Computing(pp. 216-223). Springer, Berlin, Heidelberg.
+ * **ModifiedBA**: Dong, H., Li, T., Ding, R. and Sun, J., 2018. A novel hybrid genetic algorithm with granular information for feature selection and optimization. Applied Soft Computing, 65, pp.33-46.
+* **BSO - Brain Storm Optimization**
+ * **OriginalBSO**: . Shi, Y. (2011, June). Brain storm optimization algorithm. In International conference in swarm intelligence (pp. 303-309). Springer, Berlin, Heidelberg.
+ * **ImprovedBSO**: El-Abd, M., 2017. Global-best brain storm optimization algorithm. Swarm and evolutionary computation, 37, pp.27-44.
+* **BSA - Bird Swarm Algorithm**
+ * **OriginalBSA**: Meng, X. B., Gao, X. Z., Lu, L., Liu, Y., & Zhang, H. (2016). A new bio-inspired optimisation algorithm:Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 28(4), 673-687.
+* **BMO - Barnacles Mating Optimizer**:
+ * **OriginalBMO**: Sulaiman, M. H., Mustaffa, Z., Saari, M. M., Daniyal, H., Daud, M. R., Razali, S., & Mohamed, A. I. (2018, June). Barnacles mating optimizer: a bio-inspired algorithm for solving optimization problems. In 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 265-270). IEEE.
+* **BES - Bald Eagle Search**
+ * **OriginalBES**: Alsattar, H. A., Zaidan, A. A., & Zaidan, B. B. (2019). Novel meta-heuristic bald eagle search optimisation algorithm. Artificial Intelligence Review, 1-28.
+* **BRO - Battle Royale Optimization**
+ * **OriginalBRO**: Rahkar Farshi, T. (2020). Battle royale optimization algorithm. Neural Computing and Applications, 1-19.
+ * **BaseBRO**: The developed version
+### C
+* **CA - Culture Algorithm**
+ * **OriginalCA**: Reynolds, R.G., 1994, February. An introduction to cultural algorithms. In Proceedings of the third annual conference on evolutionary programming (Vol. 24, pp. 131-139). River Edge, NJ: World Scientific.
+* **CEM - Cross Entropy Method**
+ * **OriginalCEM**: Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability, 1(2), 127-190.
+* **CSO - Cat Swarm Optimization**
+ * **OriginalCSO**: Chu, S. C., Tsai, P. W., & Pan, J. S. (2006, August). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg.
+* **CSA - Cuckoo Search Algorithm**
+ * **OriginalCSA**: Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210-214). Ieee.
+* **CRO - Coral Reefs Optimization**
+ * **OriginalCRO**: Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., & Portilla-Figueras, J. A. (2014). The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014.
+ * **OCRO**: Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient time-series forecasting using neural network and opposition-based coral reefs optimization. International Journal of Computational Intelligence Systems, 12(2), 1144-1161.
+* **COA - Coyote Optimization Algorithm**
+ * **OriginalCOA**: Pierezan, J., & Coelho, L. D. S. (2018, July). Coyote optimization algorithm: a new metaheuristic for global optimization problems. In 2018 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE.
+* **CHIO - Coronavirus Herd Immunity Optimization**
+ * **OriginalCHIO**: Al-Betar, M. A., Alyasseri, Z. A. A., Awadallah, M. A., & Abu Doush, I. (2021). Coronavirus herd immunity optimizer (CHIO). Neural Computing and Applications, 33(10), 5011-5042.
+ * **BaseCHIO**: The developed version
+* **CGO - Chaos Game Optimization**
+ * **OriginalCGO**: Talatahari, S., & Azizi, M. (2021). Chaos Game Optimization: a novel metaheuristic algorithm. Artificial Intelligence Review, 54(2), 917-1004.
+* **CSA - Circle Search Algorithm**
+ * **OriginalCSA**: Qais, M. H., Hasanien, H. M., Turky, R. A., Alghuwainem, S., Tostado-Véliz, M., & Jurado, F. (2022). Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm. Mathematics, 10(10), 1626.
+### D
+* **DE - Differential Evolution**
+ * **BaseDE**: Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
+ * **JADE**: Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions on evolutionary computation, 13(5), 945-958.
+ * **SADE**: Qin, A. K., & Suganthan, P. N. (2005, September). Self-adaptive differential evolution algorithm for numerical optimization. In 2005 IEEE congress on evolutionary computation (Vol. 2, pp. 1785-1791). IEEE.
+ * **SHADE**: Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE.
+ * **L_SHADE**: Tanabe, R., & Fukunaga, A. S. (2014, July). Improving the search performance of SHADE using linear population size reduction. In 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658-1665). IEEE.
+ * **SAP_DE**: Teo, J. (2006). Exploring dynamic self-adaptive populations in differential evolution. Soft Computing, 10(8), 673-686.
+* **DSA - Differential Search Algorithm (not done)**
+ * **BaseDSA**: Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers & Geosciences, 46, 229-247.
+* **DO - Dragonfly Optimization**
+ * **OriginalDO**: Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.
+* **DMOA - Dwarf Mongoose Optimization Algorithm**
+ * **OriginalDMOA**: Agushaka, J. O., Ezugwu, A. E., & Abualigah, L. (2022). Dwarf mongoose optimization algorithm. Computer methods in applied mechanics and engineering, 391, 114570.
+ * **DevDMOA**: The developed version
+### E
+* **ES - Evolution Strategies** .
+ * **OriginalES**: Schwefel, H. P. (1984). Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution. Annals of Operations Research, 1(2), 165-167.
+ * **LevyES**: Zhang, S., & Salari, E. (2005). Competitive learning vector quantization with evolution strategies for image compression. Optical Engineering, 44(2), 027006.
+* **EP - Evolutionary programming** .
+ * **OriginalEP**: Fogel, L. J. (1994). Evolutionary programming in perspective: The top-down view. Computational intelligence: Imitating life.
+ * **LevyEP**: Lee, C.Y. and Yao, X., 2001, May. Evolutionary algorithms with adaptive lévy mutations. In Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546) (Vol. 1, pp. 568-575). IEEE.
+* **EHO - Elephant Herding Optimization** .
+ * **OriginalEHO**: Wang, G. G., Deb, S., & Coelho, L. D. S. (2015, December). Elephant herding optimization. In 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (pp. 1-5). IEEE.
+* **EFO - Electromagnetic Field Optimization** .
+ * **OriginalEFO**:Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8-22.
+ * **BaseEFO**: The developed version
+* **EOA - Earthworm Optimisation Algorithm** .
+ * **OriginalEOA**: Wang, G. G., Deb, S., & dos Santos Coelho, L. (2018). Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. IJBIC, 12(1), 1-22.
+* **EO - Equilibrium Optimizer** .
+ * **OriginalEO**: Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2019). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems.
+ * **ModifiedEO**: Gupta, S., Deep, K., & Mirjalili, S. (2020). An efficient equilibrium optimizer with mutation strategy for numerical optimization. Applied Soft Computing, 96, 106542.
+ * **AdaptiveEO**: Wunnava, A., Naik, M. K., Panda, R., Jena, B., & Abraham, A. (2020). A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Engineering Applications of Artificial Intelligence, 94, 103836.
+### F
+* **FFA - Firefly Algorithm**
+ * **OriginalFFA**: Łukasik, S., & Żak, S. (2009, October). Firefly algorithm for continuous constrained optimization tasks. In International conference on computational collective intelligence (pp. 97-106). Springer, Berlin, Heidelberg.
+* **FA - Fireworks algorithm**
+ * **OriginalFA**: Tan, Y., & Zhu, Y. (2010, June). Fireworks algorithm for optimization. In International conference in swarm intelligence (pp. 355-364). Springer, Berlin, Heidelberg.
+* **FPA - Flower Pollination Algorithm**
+ * **OriginalFPA**: Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240-249). Springer, Berlin, Heidelberg.
+* **FOA - Fruit-fly Optimization Algorithm**
+ * **OriginalFOA**: Pan, W. T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74.
+ * **BaseFOA**: The developed version
+ * **WhaleFOA**: Fan, Y., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., & Li, C. (2020). Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications, 159, 113502.
+* **FBIO - Forensic-Based Investigation Optimization**
+ * **OriginalFBIO**: Chou, J.S. and Nguyen, N.M., 2020. FBI inspired meta-optimization. Applied Soft Computing, p.106339.
+ * **BaseFBIO**: Fathy, A., Rezk, H. and Alanazi, T.M., 2021. Recent approach of forensic-based investigation algorithm for optimizing fractional order PID-based MPPT with proton exchange membrane fuel cell.IEEE Access,9, pp.18974-18992.
+* **FHO - Fire Hawk Optimization**
+ * **OriginalFHO**: Azizi, M., Talatahari, S., & Gandomi, A. H. (2022). Fire Hawk Optimizer: a novel metaheuristic algorithm. Artificial Intelligence Review, 1-77.
+### G
+* **GA - Genetic Algorithm**
+ * **BaseGA**: Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
+ * **SingleGA**: De Falco, I., Della Cioppa, A. and Tarantino, E., 2002. Mutation-based genetic algorithm: performance evaluation. Applied Soft Computing, 1(4), pp.285-299.
+ * **MultiGA**: De Jong, K.A. and Spears, W.M., 1992. A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of mathematics and Artificial intelligence, 5(1), pp.1-26.
+ * **EliteSingleGA**: Elite version of Single-point mutation GA
+ * **EliteMultiGA**: Elite version of Multiple-point mutation GA
+* **GWO - Grey Wolf Optimizer**
+ * **OriginalGWO**: Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
+ * **RW_GWO**: Gupta, S., & Deep, K. (2019). A novel random walk grey wolf optimizer. Swarm and evolutionary computation, 44, 101-112.
+ * **GWO_WOA**: Obadina, O. O., Thaha, M. A., Althoefer, K., & Shaheed, M. H. (2022). Dynamic characterization of a master–slave robotic manipulator using a hybrid grey wolf–whale optimization algorithm. Journal of Vibration and Control, 28(15-16), 1992-2003.
+* **GOA - Grasshopper Optimisation Algorithm**
+ * **OriginalGOA**: Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 30-47.
+* **GCO - Germinal Center Optimization**
+ * **OriginalGCO**: Villaseñor, C., Arana-Daniel, N., Alanis, A. Y., López-Franco, C., & Hernandez-Vargas, E. A. (2018). Germinal center optimization algorithm. International Journal of Computational Intelligence Systems, 12(1), 13-27.
+ * **BaseGCO**: The developed version
+* **GSKA - Gaining Sharing Knowledge-based Algorithm**
+ * **OriginalGSKA**: Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 1-29.
+ * **BaseGSKA**: Mohamed, A.W., Hadi, A.A., Mohamed, A.K. and Awad, N.H., 2020, July. Evaluating the performance of adaptive GainingSharing knowledge based algorithm on CEC 2020 benchmark problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.
+* **GBO - Gradient-Based Optimizer**
+ * **OriginalGBO**: Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new metaheuristic optimization algorithm. Information Sciences, 540, 131-159.
+### H
+* **HC - Hill Climbing** .
+ * **OriginalHC**: Talbi, E. G., & Muntean, T. (1993, January). Hill-climbing, simulated annealing and genetic algorithms: a comparative study and application to the mapping problem. In [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences (Vol. 2, pp. 565-573). IEEE.
+ * **SwarmHC**: The developed version based on swarm-based idea (Original is single-solution based method)
+* **HS - Harmony Search** .
+ * **OriginalHS**: Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm:harmony search. simulation, 76(2), 60-68.
+ * **BaseHS**: The developed version
+* **HHO - Harris Hawks Optimization** .
+ * **OriginalHHO**: Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-872.
+* **HGSO - Henry Gas Solubility Optimization** .
+ * **OriginalHGSO**: Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, 646-667.
+* **HGS - Hunger Games Search** .
+ * **OriginalHGS**: Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search:Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.
+* **HHOA - Horse Herd Optimization Algorithm (not done)** .
+ * **BaseHHOA**: MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems, 213, 106711.
+* **HBA - Honey Badger Algorithm**:
+ * **OriginalHBA**: Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S., & Al-Atabany, W. (2022). Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Mathematics and Computers in Simulation, 192, 84-110.
+### I
+* **IWO - Invasive Weed Optimization** .
+ * **OriginalIWO**: Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics, 1(4), 355-366.
+* **ICA - Imperialist Competitive Algorithm**
+ * **OriginalICA**: Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.
+* **INFO - weIghted meaN oF vectOrs**:
+ * **OriginalINFO**: Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
+### J
+* **JA - Jaya Algorithm**
+ * **OriginalJA**: Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
+ * **BaseJA**: The developed version
+ * **LevyJA**: Iacca, G., dos Santos Junior, V. C., & de Melo, V. V. (2021). An improved Jaya optimization algorithm with Levy flight. Expert Systems with Applications, 165, 113902.
+### K
+### L
+* **LCO - Life Choice-based Optimization**
+ * **OriginalLCO**: Khatri, A., Gaba, A., Rana, K. P. S., & Kumar, V. (2019). A novel life choice-based optimizer. Soft Computing, 1-21.
+ * **BaseLCO**: The developed version
+ * **ImprovedLCO**: The improved version using Gaussian distribution and Mutation Mechanism
+### M
+* **MA - Memetic Algorithm**
+ * **OriginalMA**: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.
+* **MFO - Moth Flame Optimization**
+ * **OriginalMFO**: Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249.
+ * **BaseMFO**: The developed version
+* **MVO - Multi-Verse Optimizer**
+ * **OriginalMVO**: Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495-513.
+ * **BaseMVO**: The developed version
+* **MSA - Moth Search Algorithm**
+ * **OriginalMSA**: Wang, G. G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151-164.
+* **MRFO - Manta Ray Foraging Optimization**
+ * **OriginalMRFO**: Zhao, W., Zhang, Z., & Wang, L. (2020). Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence, 87, 103300.
+* **MPA - Marine Predators Algorithm**:
+ * **OriginalMPA**: Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert systems with applications, 152, 113377.
+### N
+* **NRO - Nuclear Reaction Optimization**
+ * **OriginalNRO**: Wei, Z., Huang, C., Wang, X., Han, T., & Li, Y. (2019). Nuclear Reaction Optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access.
+* **NMRA - Nake Mole-Rat Algorithm**
+ * **OriginalNMRA**: Salgotra, R., & Singh, U. (2019). The naked mole-rat algorithm. Neural Computing and Applications, 31(12), 8837-8857.
+ * **ImprovedNMRA**: Singh, P., Mittal, N., Singh, U. and Salgotra, R., 2021. Naked mole-rat algorithm with improved exploration and exploitation capabilities to determine 2D and 3D coordinates of sensor nodes in WSNs. Arabian Journal for Science and Engineering, 46(2), pp.1155-1178.
+### O
+### P
+* **PSO - Particle Swarm Optimization**
+ * **OriginalPSO**: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Ieee.
+ * **PPSO**: Ghasemi, M., Akbari, E., Rahimnejad, A., Razavi, S. E., Ghavidel, S., & Li, L. (2019). Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Computing, 23(19), 9701-9718.
+ * **HPSO_TVAC**: Ghasemi, M., Aghaei, J., & Hadipour, M. (2017). New self-organising hierarchical PSO with jumping time-varying acceleration coefficients. Electronics Letters, 53(20), 1360-1362.
+ * **C_PSO**: Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 25(5), 1261-1271.
+ * **CL_PSO**: Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE transactions on evolutionary computation, 10(3), 281-295.
+* **PFA - Pathfinder Algorithm**
+ * **OriginalPFA**: Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm. Applied Soft Computing, 78, 545-568.
+* **PSS - Pareto-like Sequential Sampling**
+ * **OriginalPSS**: Shaqfa, M., & Beyer, K. (2021). Pareto-like sequential sampling heuristic for global optimisation. Soft Computing, 25(14), 9077-9096.
+### Q
+* **QSA - Queuing Search Algorithm**
+ * **OriginalQSA**: Zhang, J., Xiao, M., Gao, L., & Pan, Q. (2018). Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling, 63, 464-490.
+ * **BaseQSA**: The developed version
+ * **OppoQSA**: Zheng, X. and Nguyen, H., 2022. A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm. Chemosphere, 287, p.132251.
+ * **LevyQSA**: Abderazek, H., Hamza, F., Yildiz, A.R., Gao, L. and Sait, S.M., 2021. A comparative analysis of the queuing search algorithm, the sine-cosine algorithm, the ant lion algorithm to determine the optimal weight design problem of a spur gear drive system. Materials Testing, 63(5), pp.442-447.
+ * **ImprovedQSA**: Nguyen, B.M., Hoang, B., Nguyen, T. and Nguyen, G., 2021. nQSV-Net: a novel queuing search variant for global space search and workload modeling. Journal of Ambient Intelligence and Humanized Computing, 12(1), pp.27-46.
+### R
+* **RUN - RUNge Kutta optimizer**:
+ * **OriginalRUN**: Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
+### S
+* **SA - Simulated Annealling**
+ * **OriginalSA**: . Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated annealing: Theory and applications (pp. 7-15). Springer, Dordrecht.
+* **SSpiderO - Social Spider Optimization**
+ * **OriginalSSpiderO**: Cuevas, E., Cienfuegos, M., ZaldíVar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384.
+* **SOS - Symbiotic Organisms Search**:
+ * **OriginalSOS**: Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112.
+* **SSpiderA - Social Spider Algorithm**
+ * **OriginalSSpiderA**: James, J. Q., & Li, V. O. (2015). A social spider algorithm for global optimization. Applied Soft Computing, 30, 614-627.
+* **SCA - Sine Cosine Algorithm**
+ * **OriginalSCA**: Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133.
+ * **BaseSCA**: Attia, A.F., El Sehiemy, R.A. and Hasanien, H.M., 2018. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, pp.331-343.
+* **SRSR - Swarm Robotics Search And Rescue**
+ * **OriginalSRSR**: Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach. Applied Soft Computing, 57, 708-726.
+* **SBO - Satin Bowerbird Optimizer**
+ * **OriginalSBO**: Moosavi, S. H. S., & Bardsiri, V. K. (2017). Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Engineering Applications of Artificial Intelligence, 60, 1-15.
+ * **BaseSBO**: The developed version
+* **SHO - Spotted Hyena Optimizer**
+ * **OriginalSHO**: Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48-70.
+* **SSO - Salp Swarm Optimization**
+ * **OriginalSSO**: Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
+* **SFO - Sailfish Optimizer**
+ * **OriginalSFO**: Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, 20-34.
+ * **ImprovedSFO**: Li, L.L., Shen, Q., Tseng, M.L. and Luo, S., 2021. Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish algorithm. Journal of Cleaner Production, 316, p.128318.
+* **SARO - Search And Rescue Optimization**
+ * **OriginalSARO**: Shabani, A., Asgarian, B., Gharebaghi, S. A., Salido, M. A., & Giret, A. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering, 2019.
+ * **BaseSARO**: The developed version using Levy-flight
+* **SSDO - Social Ski-Driver Optimization**
+ * **OriginalSSDO**: Tharwat, A., & Gabel, T. (2019). Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications, 1-14.
+* **SLO - Sea Lion Optimization**
+ * **OriginalSLO**: Masadeh, R., Mahafzah, B. A., & Sharieh, A. (2019). Sea Lion Optimization Algorithm. Sea, 10(5).
+ * **ImprovedSLO**: The developed version
+ * **ModifiedSLO**: Masadeh, R., Alsharman, N., Sharieh, A., Mahafzah, B.A. and Abdulrahman, A., 2021. Task scheduling on cloud computing based on sea lion optimization algorithm. International Journal of Web Information Systems.
+* **Seagull Optimization Algorithm**
+ * **OriginalSOA**: Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-based systems, 165, 169-196.
+ * **DevSOA**: The developed version
+* **SMA - Slime Mould Algorithm**
+ * **OriginalSMA**: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
+ * **BaseSMA**: The developed version
+* **SSA - Sparrow Search Algorithm**
+ * **OriginalSSA**: Jiankai Xue & Bo Shen (2020) A novel swarm intelligence optimization approach: sparrow search algorithm, Systems Science & Control Engineering, 8:1, 22-34, DOI: 10.1080/21642583.2019.1708830
+ * **BaseSSA**: The developed version
+* **SPBO - Student Psychology Based Optimization**
+ * **OriginalSPBO**: Das, B., Mukherjee, V., & Das, D. (2020). Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems. Advances in Engineering software, 146, 102804.
+ * **DevSPBO**: The developed version
+* **SCSO - Sand Cat Swarm Optimization**
+ * **OriginalSCSO**: Seyyedabbasi, A., & Kiani, F. (2022). Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Engineering with Computers, 1-25.
+### T
+* **TLO - Teaching Learning Optimization**
+ * **OriginalTLO**: Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.
+ * **BaseTLO**: Rao, R., & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations, 3(4), 535-560.
+ * **ImprovedTLO**: Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710-720.
+* **TWO - Tug of War Optimization**
+ * **OriginalTWO**: Kaveh, A., & Zolghadr, A. (2016). A novel meta-heuristic algorithm: tug of war optimization. Iran University of Science & Technology, 6(4), 469-492.
+ * **OppoTWO**: Kaveh, A., Almasi, P. and Khodagholi, A., 2022. Optimum Design of Castellated Beams Using Four Recently Developed Meta-heuristic Algorithms. Iranian Journal of Science and Technology, Transactions of Civil Engineering, pp.1-13.
+ * **LevyTWO**: The developed version using Levy-flight
+ * **ImprovedTWO**: Nguyen, T., Hoang, B., Nguyen, G., & Nguyen, B. M. (2020). A new workload prediction model using extreme learning machine and enhanced tug of war optimization. Procedia Computer Science, 170, 362-369.
+* **TSA - Tunicate Swarm Algorithm**
+ * **OriginalTSA**: Kaur, S., Awasthi, L. K., Sangal, A. L., & Dhiman, G. (2020). Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence, 90, 103541.
+* **TSO - Tuna Swarm Optimization**
+ * **OriginalTSO**: Xie, L., Han, T., Zhou, H., Zhang, Z. R., Han, B., & Tang, A. (2021). Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Computational intelligence and Neuroscience, 2021.
+### U
+### V
+* **VCS - Virus Colony Search**
+ * **OriginalVCS**: Li, M. D., Zhao, H., Weng, X. W., & Han, T. (2016). A novel nature-inspired algorithm for optimization: Virus colony search. Advances in Engineering Software, 92, 65-88.
+ * **BaseVCS**: The developed version
+### W
+* **WCA - Water Cycle Algorithm**
+ * **OriginalWCA**: Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151-166.
+* **WOA - Whale Optimization Algorithm**
+ * **OriginalWOA**: Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
+ * **HI_WOA**: Tang, C., Sun, W., Wu, W., & Xue, M. (2019, July). A hybrid improved whale optimization algorithm. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 362-367). IEEE.
+* **WHO - Wildebeest Herd Optimization**
+ * **OriginalWHO**: Amali, D., & Dinakaran, M. (2019). Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-14.
+* **WDO - Wind Driven Optimization**
+ * **OriginalWDO**: Bayraktar, Z., Komurcu, M., Bossard, J.A. and Werner, D.H., 2013. The wind driven optimization technique and its application in electromagnetics. IEEE transactions on antennas and propagation, 61(5), pp.2745-2757.
+### X
+### Y
+### Z
+
+%package help
+Summary: Development documents and examples for mealpy
+Provides: python3-mealpy-doc
+%description help
+[![GitHub release](https://img.shields.io/badge/release-2.5.3-yellow.svg)](https://github.com/thieu1995/mealpy/releases)
+[![Wheel](https://img.shields.io/pypi/wheel/gensim.svg)](https://pypi.python.org/pypi/mealpy)
+[![PyPI version](https://badge.fury.io/py/mealpy.svg)](https://badge.fury.io/py/mealpy)
+![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mealpy.svg)
+![PyPI - Status](https://img.shields.io/pypi/status/mealpy.svg)
+![PyPI - Downloads](https://img.shields.io/pypi/dm/mealpy.svg)
+[![Downloads](https://pepy.tech/badge/mealpy)](https://pepy.tech/project/mealpy)
+[![Tests & Publishes to PyPI](https://github.com/thieu1995/mealpy/actions/workflows/publish-package.yaml/badge.svg)](https://github.com/thieu1995/mealpy/actions/workflows/publish-package.yaml)
+![GitHub Release Date](https://img.shields.io/github/release-date/thieu1995/mealpy.svg)
+[![Documentation Status](https://readthedocs.org/projects/mealpy/badge/?version=latest)](https://mealpy.readthedocs.io/en/latest/?badge=latest)
+[![Chat](https://img.shields.io/badge/Chat-on%20Telegram-blue)](https://t.me/+fRVCJGuGJg1mNDg1)
+[![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/thieu1995/mealpy.svg)](http://isitmaintained.com/project/thieu1995/mealpy "Average time to resolve an issue")
+[![Percentage of issues still open](http://isitmaintained.com/badge/open/thieu1995/mealpy.svg)](http://isitmaintained.com/project/thieu1995/mealpy "Percentage of issues still open")
+![GitHub contributors](https://img.shields.io/github/contributors/thieu1995/mealpy.svg)
+[![GitTutorial](https://img.shields.io/badge/PR-Welcome-%23FF8300.svg?)](https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3711948.svg)](https://doi.org/10.5281/zenodo.3711948)
+[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
+MEALPY is the largest python library for most of the cutting-edge nature-inspired meta-heuristic algorithms (population-based). Population meta-heuristic algorithms (PMA) are the most popular algorithms in the field of
+approximate optimization.
+* **Free software:** GNU General Public License (GPL) V3 license
+* **Total algorithms**: 174 (102 original, 45 official variants, 27 developed variants)
+* **Documentation:** https://mealpy.readthedocs.io/en/latest/
+* **Python versions:** 3.7.x, 3.8.x, 3.9.x, 3.10.x, 3.11.x
+* **Dependencies:** numpy, scipy, pandas, matplotlib
+# Goals
+Our goals are to implement all of the classical as well as the state-of-the-art nature-inspired algorithms, create a simple interface that helps researchers access optimization algorithms as quickly as possible, and share knowledge of the optimization field with everyone without a fee. What you can do with mealpy:
+- Analyse parameters of meta-heuristic algorithms.
+- Perform Qualitative and Quantitative Analysis of algorithms.
+- Analyse rate of convergence of algorithms.
+- Test and Analyse the scalability and the robustness of algorithms.
+- Save results in various formats (csv, json, pickle, png, pdf, jpeg)
+- Export and import models can also be done with Mealpy.
+# Installation
+### Install with pip
+Install the [current PyPI release](https://pypi.python.org/pypi/mealpy):
+```sh
+$ pip install mealpy==2.5.3
+```
+### Install from source
+In case you want to install directly from the source code, use:
+```sh
+$ git clone https://github.com/thieu1995/mealpy.git
+$ cd mealpy
+$ python setup.py install
+```
+# Usage
+After installation, you can import Mealpy as any other Python module:
+```sh
+$ python
+>>> import mealpy
+>>> mealpy.__version__
+```
+Let's go through a basic and advanced example.
+## Examples
+### Simple Benchmark Function
+```python
+from mealpy.bio_based import SMA
+import numpy as np
+def fitness_function(solution):
+ return np.sum(solution**2)
+problem = {
+ "fit_func": fitness_function,
+ "lb": [-100, ] * 30,
+ "ub": [100, ] * 30,
+ "minmax": "min",
+ "log_to": None,
+ "save_population": False,
+}
+## Run the algorithm
+model = SMA.BaseSMA(epoch=100, pop_size=50, pr=0.03)
+best_position, best_fitness = model.solve(problem)
+print(f"Best solution: {best_position}, Best fitness: {best_fitness}")
+```
+### Constrained Benchmark Function
+* [The Constrained Benchmark Function](https://github.com/thieu1995/mealpy/tree/master/examples/applications/run_constraint_functions.py)
+### Multi-objective Benchmark Function
+* [Multi-objective benchmark functions](https://github.com/thieu1995/mealpy/tree/master/examples/applications/run_multi_objective_functions.py)
+### Custom Problem
+For our custom problem, we can create a class and inherit from the Problem class, named the child class the
+'Squared' class. In the initialization method of the 'Squared' class, we have to set the *lb*, *ub*, and *minmax*
+of the problem (lb: a list of lower bound values, ub: a list of upper bound values, and minmax: a string specifying
+whether the problem is a 'min' or 'max' problem).
+Afterwards, we have to override the abstract method 'fit_func()', which takes a parameter 'solution' (the solution
+to be evaluated) and returns the function value. The resulting code should look something like the code snippet
+below. 'Name' is an additional parameter we want to include in this class, and you can include any other additional
+parameters you need.
+```python
+import numpy as np
+from mealpy.bio_based import BBO
+from mealpy.utils.problem import Problem
+# Our custom problem class
+class Squared(Problem):
+ def __init__(self, lb=(-5, -5, -5, -5, -5, -5), ub=(5, 5, 5, 5, 5, 5), minmax="min", name="Squared", **kwargs):
+ super().__init__(lb, ub, minmax, **kwargs)
+ self.name = name
+ def fit_func(self, solution):
+ return np.sum(solution ** 2)
+```
+Now, we define an algorithm, and pass an instance of our *Squared* class as the problem argument.
+```python
+problem = Squared(lb=[-10] * 20, ub=[10] * 20, minmax="min")
+model = BBO.BaseBBO(epoch=10, pop_size=50)
+best_position, best_fitness = model.solve(problem)
+print(best_position)
+print(best_fitness)
+print(model.get_parameters())
+print(model.get_name())
+print(model.get_attributes()["solution"])
+print(model.problem.get_name())
+print(model.problem.n_dims)
+```
+### Tuner class (GridSearchCV/ParameterSearch, Hyper-parameter tuning)
+We build a dedicated class, Tuner, that can help you tune your algorithm's parameters.
+```python
+import numpy as np
+from mealpy.bio_based import BBO
+from mealpy.tuner import Tuner # Remember this
+def fitness(solution):
+ return np.sum(solution**2)
+problem = {
+ "lb": [-100, ]*50,
+ "ub": [100, ]*50,
+ "minmax": "min",
+ "fit_func": fitness,
+ "name": "Squared Problem",
+ "log_to": None,
+}
+paras_bbo_grid = {
+ "epoch": [100],
+ "pop_size": [50],
+ "elites": [2, 3, 4, 5],
+ "p_m": [0.01, 0.02, 0.05, 0.1, 0.15, 0.2]
+}
+term = {
+ "max_fe": 10000
+}
+if __name__ == "__main__":
+ model = BBO.BaseBBO()
+ tuner = Tuner(model, paras_bbo_grid)
+ tuner.execute(problem=problem, termination=term, n_trials=5, n_jobs=5, mode="thread", n_workers=4, verbose=True)
+ ## Solve this problem 5 times (n_trials) using 5 processes (n_jobs), each process will handle 1 trial.
+ ## The mode to run the solver is thread (mode), we will calculate the fitness of 4 solutions (n_workers) at the same time
+ print(tuner.best_score)
+ print(tuner.best_params)
+ print(tuner.best_algorithm)
+ print(tuner.best_algorithm.get_name())
+ ## Save results to csv file
+ tuner.export_results(save_path="history/tuning", save_as="csv")
+ ## Re-solve the best model on your problem
+ best_position, best_fitness = tuner.resolve()
+ print(best_position, best_fitness)
+ print(tuner.problem.get_name())
+```
+### Multitask class (Multitask solving)
+We also build a dedicated class, Multitask, that can help you run several scenarios. For example:
+1. Run 1 algorithm with 1 problem, and multiple trials
+2. Run 1 algorithm with multiple problems, and multiple trials
+3. Run multiple algorithms with 1 problem, and multiple trials
+4. Run multiple algorithms with multiple problems, and multiple trials
+```python
+#### Using multiple algorithm to solve multiple problems with multiple trials
+## Import libraries
+## For example, we want to solve F5, F10, F29 problem in CEC-2017
+from opfunu.cec_based.cec2017 import F52017, F102017, F292017
+from mealpy.bio_based import BBO
+from mealpy.evolutionary_based import DE
+from mealpy.multitask import Multitask # Remember this
+## You can define your own problems
+f1 = F52017(30, f_bias=0)
+f2 = F102017(30, f_bias=0)
+f3 = F292017(30, f_bias=0)
+p1 = {
+ "lb": f1.lb.tolist(),
+ "ub": f1.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f1.evaluate,
+ "name": "F5-CEC2017",
+ "log_to": None,
+}
+p2 = {
+ "lb": f2.lb.tolist(),
+ "ub": f2.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f2.evaluate,
+ "name": "F10-CEC2017",
+ "log_to": None,
+}
+p3 = {
+ "lb": f3.lb.tolist(),
+ "ub": f3.ub.tolist(),
+ "minmax": "min",
+ "fit_func": f3.evaluate,
+ "name": "F29-CEC2017",
+ "log_to": None,
+}
+## Define models
+model1 = BBO.BaseBBO(epoch=10, pop_size=50)
+model2 = BBO.OriginalBBO(epoch=10, pop_size=50)
+model3 = DE.BaseDE(epoch=10, pop_size=50)
+## Define termination if needed
+term = {
+ "max_fe": 10000
+}
+## Define and run Multitask
+if __name__ == "__main__":
+ multitask = Multitask(algorithms=(model1, model2, model3), problems=(p1, p2, p3), terminations=(term, ), modes=("thread", ))
+ # default modes = "single", default termination = epoch (as defined in problem dictionary)
+ multitask.execute(n_trials=5, n_jobs=5, save_path="history", save_as="csv", save_convergence=False, verbose=False)
+ ## Check the directory: history/, you will see list of .csv result files
+```
+For more usage examples please look at [examples](/examples) folder.
+More advanced examples can also be found in the [Mealpy-examples repository](https://github.com/thieu1995/mealpy_examples).
+### Get Visualize Figures
+* [Tutorials](/examples/utils/visualize/all_charts.py)
+<p align="center"><img src="https://thieu1995.github.io/post/2022-04/19-mealpy-tutorials/mealpy2.png" alt="MEALPY"/>
+</p>
+## Mealpy Application
+### Mealpy + Neural Network (Replace the Gradient Descent Optimizer)
+* Time-series Problem:
+ * Traditional MLP
+ code: [Link](https://github.com/thieu1995/mealpy/tree/master/examples/applications/keras/traditional-mlp-time-series.py)
+ * Hybrid code (Mealpy +
+ MLP): [Link](https://github.com/thieu1995/mealpy/tree/master/examples/applications/keras/mha-hybrid-mlp-time-series.py)
+* Classification Problem:
+ * Traditional MLP
+ code: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/traditional-mlp-classification.py)
+ * Hybrid code (Mealpy +
+ MLP): [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/mha-hybrid-mlp-classification.py)
+### Mealpy + Neural Network (Optimize Neural Network Hyper-parameter)
+Code: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/keras/mha-hyper-parameter-mlp-time-series.py)
+### Other Applications
+* Solving Knapsack Problem (Discrete
+ problems): [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/discrete-problems/knapsack-problem.py)
+* Optimize SVM (SVC)
+ model: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/sklearn/svm_classification.py)
+* Optimize Linear Regression
+ Model: [Link](https://github.com/thieu1995/mealpy/blob/master/examples/applications/pytorch/linear_regression.py)
+* Travelling Salesman Problem: https://github.com/thieu1995/MHA-TSP
+* Feature selection problem: https://github.com/thieu1995/MHA-FS
+## Tutorial Videos
+All tutorial videos: [Link](https://mealpy.readthedocs.io/en/latest/pages/general/video_tutorials.html)
+All code examples: [Link](https://github.com/thieu1995/mealpy/tree/master/examples)
+All visualization examples: [Link](https://mealpy.readthedocs.io/en/latest/pages/visualization.html)
+### Get helps (questions, problems)
+* Official source code repo: https://github.com/thieu1995/mealpy
+* Official document: https://mealpy.readthedocs.io/
+* Download releases: https://pypi.org/project/mealpy/
+* Issue tracker: https://github.com/thieu1995/mealpy/issues
+* Notable changes log: https://github.com/thieu1995/mealpy/blob/master/ChangeLog.md
+* Examples with different meapy version: https://github.com/thieu1995/mealpy/blob/master/EXAMPLES.md
+* This project also related to our another projects which are "meta-heuristics" and "neural-network", check it here
+ * https://github.com/thieu1995/opfunu
+ * https://github.com/thieu1995/metaheuristics
+ * https://github.com/aiir-team
+**Want to have an instant assistant? Join our telegram community at [link](https://t.me/+fRVCJGuGJg1mNDg1)**
+We share lots of information, questions, and answers there. You will get more support and knowledge there.
+### Cite Us
+If you are using mealpy in your project, we would appreciate citations:
+```bibtex
+@article{van2023mealpy,
+ title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
+ author={Van Thieu, Nguyen and Mirjalili, Seyedali},
+ journal={Journal of Systems Architecture},
+ year={2023},
+ publisher={Elsevier}
+}
+@article{van2023groundwater,
+ title={Groundwater level modeling using Augmented Artificial Ecosystem Optimization},
+ author={Van Thieu, Nguyen and Barma, Surajit Deb and Van Lam, To and Kisi, Ozgur and Mahesha, Amai},
+ journal={Journal of Hydrology},
+ volume={617},
+ pages={129034},
+ year={2023},
+ publisher={Elsevier}
+}
+```
+# List of papers used MEALPY
+- Min, J., Oh, M., Kim, W., Seo, H., & Paek, J. (2022, October). Evaluation of Metaheuristic Algorithms for TAS Scheduling in Time-Sensitive Networking. In 2022 13th International Conference on Information and Communication Technology Convergence (ICTC) (pp. 809-812). IEEE.
+- Khozeimeh, F., Sharifrazi, D., Izadi, N. H., Joloudari, J. H., Shoeibi, A., Alizadehsani, R., ... & Islam, S. M. S. (2021). Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Scientific Reports, 11(1), 15343.
+- Rajesh, K., Jain, E., & Kotecha, P. (2022). A Multi-Objective approach to the Electric Vehicle Routing Problem. arXiv preprint arXiv:2208.12440.
+- Sánchez, A. J. H., & Upegui, F. R. (2022). Una herramienta para el diseño de redes MSMN de banda ancha en líneas de transmisión basada en algoritmos heurísticos de optimización comparados. Revista Ingeniería UC, 29(2), 106-123.
+- Khanmohammadi, M., Armaghani, D. J., & Sabri Sabri, M. M. (2022). Prediction and Optimization of Pile Bearing Capacity Considering Effects of Time. Mathematics, 10(19), 3563.
+- Kudela, J. (2023). The Evolutionary Computation Methods No One Should Use. arXiv preprint arXiv:2301.01984.
+- Vieira, M., Faia, R., Pinto, T., & Vale, Z. (2022, September). Schedule Peer-to-Peer Transactions of an Energy Community Using Particle Swarm. In 2022 18th International Conference on the European Energy Market (EEM) (pp. 1-6). IEEE.
+- Bui, X. N., Nguyen, H., Le, Q. T., & Le, T. N. Forecasting PM. MINING SCIENCE ANDTECHNOLOGY (Russia), 111.
+- Bui, X. N., Nguyen, H., Le, Q. T., & Le, T. N. (2022). Forecasting PM 2.5 emissions in open-pit minesusing a functional link neural network optimized by various optimization algorithms. Gornye nauki i tekhnologii= Mining Science and Technology (Russia), 7(2), 111-125.
+- Doğan, E., & Yörükeren, N. (2022). Enhancement of Transmission System Security with Archimedes Optimization Algorithm.
+- Ayub, N., Aurangzeb, K., Awais, M., & Ali, U. (2020, November). Electricity theft detection using CNN-GRU and manta ray foraging optimization algorithm. In 2020 IEEE 23Rd international multitopic conference (INMIC) (pp. 1-6). IEEE.
+- Pintilie, L., Nechita, M. T., Suditu, G. D., Dafinescu, V., & Drăgoi, E. N. (2022). Photo-decolorization of Eriochrome Black T: process optimization with Differential Evolution algorithm. In PASEW-22, MESSH-22 & CABES-22 April 19–21, 2022 Paris (France). Eminent Association of Pioneers.
+- LaTorre, A., Molina, D., Osaba, E., Poyatos, J., Del Ser, J., & Herrera, F. (2021). A prescription of methodological guidelines for comparing bio-inspired optimization algorithms. Swarm and Evolutionary Computation, 67, 100973.
+- Gottam, S., Nanda, S. J., & Maddila, R. K. (2021, December). A CNN-LSTM Model Trained with Grey Wolf Optimizer for Prediction of Household Power Consumption. In 2021 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS) (pp. 355-360). IEEE.
+- Darius, P. S., Devadason, J., & Solomon, D. G. (2022, December). Prospects of Ant Colony Optimization (ACO) in Various Domains. In 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C) (pp. 79-84). IEEE.
+- Ayub, N., Irfan, M., Awais, M., Ali, U., Ali, T., Hamdi, M., ... & Muhammad, F. (2020). Big data analytics for short and medium-term electricity load forecasting using an AI techniques ensembler. Energies, 13(19), 5193.
+- Biundini, I. Z., Melo, A. G., Coelho, F. O., Honório, L. M., Marcato, A. L., & Pinto, M. F. (2022). Experimentation and Simulation with Autonomous Coverage Path Planning for UAVs. Journal of Intelligent & Robotic Systems, 105(2), 46.
+- Yousaf, I., Anwar, F., Imtiaz, S., Almadhor, A. S., Ishmanov, F., & Kim, S. W. (2022). An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer’s-Based IoT System. Computational Intelligence and Neuroscience, 2022.
+- Xu, L., Yan, W., & Ji, J. (2023). The research of a novel WOG-YOLO algorithm for autonomous driving object detection. Scientific reports, 13(1), 3699.
+- Costache, R. D., Arabameri, A., Islam, A. R. M. T., Abba, S. I., Pandey, M., Ajin, R. S., & Pham, B. T. (2022). Flood susceptibility computation using state-of-the-art machine learning and optimization algorithms.
+- Del Ser, J., Osaba, E., Martinez, A. D., Bilbao, M. N., Poyatos, J., Molina, D., & Herrera, F. (2021, December). More is not always better: insights from a massive comparison of meta-heuristic algorithms over real-parameter optimization problems. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-7). IEEE.
+- Rustam, F., Aslam, N., De La Torre Díez, I., Khan, Y. D., Mazón, J. L. V., Rodríguez, C. L., & Ashraf, I. (2022, November). White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images. In Healthcare (Vol. 10, No. 11, p. 2230). MDPI.
+- Neupane, D., Kafle, S., Gurung, S., Neupane, S., & Bhattarai, N. (2021). Optimal sizing and financial analysis of a stand-alone SPV-micro-hydropower hybrid system considering generation uncertainty. International Journal of Low-Carbon Technologies, 16(4), 1479-1491.
+- Liang, R., Le-Hung, T., & Nguyen-Thoi, T. (2022). Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model. Journal of Building Engineering, 59, 105087.
+- He, Z., Nguyen, H., Vu, T. H., Zhou, J., Asteris, P. G., & Mammou, A. (2022). Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm-and evolution-based algorithms. Acta Geotechnica, 1-16.
+- Xu, L., Yan, W., & Ji, J. (2022). The research of a novel WOG-YOLO algorithm forautonomous driving object detection.
+- Nasir Ayub, M. I., Awais, M., Ali, U., Ali, T., Hamdi, M., Alghamdi, A., & Muhammad, F. Big Data Analytics for Short and Medium Term Electricity Load Forecasting using AI Techniques Ensembler.
+- Xie, C., Nguyen, H., Choi, Y., & Armaghani, D. J. (2022). Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays. Geoscience Frontiers, 13(2), 101313.
+- Hakemi, S., Houshmand, M., & Hosseini, S. A. (2022). A Dynamic Quantum-Inspired Genetic Algorithm with Lengthening Chromosome Size.
+- Kashifi, M. T. City-Wide Crash Risk Prediction and Interpretation Using Deep Learning Model with Multi-Source Big Data. Available at SSRN 4329686.
+- Nguyen, H., & Hoang, N. D. (2022). Computer vision-based classification of concrete spall severity using metaheuristic-optimized Extreme Gradient Boosting Machine and Deep Convolutional Neural Network. Automation in Construction, 140, 104371.
+- Zheng, J., Lu, Z., Wu, K., Ning, G. H., & Li, D. (2020). Coinage-metal-based cyclic trinuclear complexes with metal–metal interactions: Theories to experiments and structures to functions. Chemical Reviews, 120(17), 9675-9742.
+- Van Thieu, N., Barma, S. D., Van Lam, T., Kisi, O., & Mahesha, A. (2023). Groundwater level modeling using Augmented Artificial Ecosystem Optimization. Journal of Hydrology, 617, 129034.
+- Mo, Z., Zhang, Z., Miao, Q., & Tsui, K. L. (2022). Intelligent Informative Frequency Band Searching Assisted by a Dynamic Bandit Tree Method for Machine Fault Diagnosis. IEEE/ASME Transactions on Mechatronics.
+- Dangi, D., Chandel, S. T., Dixit, D. K., Sharma, S., & Bhagat, A. (2023). An Efficient Model for Sentiment Analysis using Artificial Rabbits Optimized Vector Functional Link Network. Expert Systems with Applications, 119849.
+- Dey, S., Roychoudhury, R., Malakar, S., & Sarkar, R. (2022). An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images. Applied Soft Computing, 114, 108094.
+- Mousavirad, S. J., & Alexandre, L. A. (2022). Population-based JPEG Image Compression: Problem Re-Formulation. arXiv preprint arXiv:2212.06313.
+- Tsui, K. L. Intelligent Informative Frequency Band Searching Assisted by A Dynamic Bandit Tree Method for Machine Fault Diagnosis.
+- Neupane, D. (2020). Optimal Sizing and Performance Analysis of Solar PV-Micro hydropower Hybrid System in the Context of Rural Area of Nepal (Doctoral dissertation, Pulchowk Campus).
+- LaTorre, A., Molina, D., Osaba, E., Poyatos, J., Del Ser, J., & Herrera, F. Swarm and Evolutionary Computation.
+- Vieira, M. A. (2022). Otimização dos custos operacionais de uma comunidade energética considerando transações locais em “peer-to-peer” (Doctoral dissertation).
+- Toğaçar, M. (2022). Using DarkNet models and metaheuristic optimization methods together to detect weeds growing along with seedlings. Ecological Informatics, 68, 101519.
+- Toğaçar, M. (2021). Detection of segmented uterine cancer images by Hotspot Detection method using deep learning models, Pigeon-Inspired Optimization, types-based dominant activation selection approaches. Computers in Biology and Medicine, 136, 104659.
+- Khan, N. A Short Term Electricity Load and Price Forecasting Model Based on BAT Algorithm in Logistic Regression and CNN-GRU with WOA.
+- Yelisetti, S., Saini, V. K., Kumar, R., & Lamba, R. (2022, May). Energy Consumption Cost Benefits through Smart Home Energy Management in Residential Buildings: An Indian Case Study. In 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET) (pp. 930-935). IEEE.
+- Nguyen, H., Cao, M. T., Tran, X. L., Tran, T. H., & Hoang, N. D. (2022). A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles. Neural Computing and Applications, 1-28.
+- Hirsching, C., de Jongh, S., Eser, D., Suriyah, M., & Leibfried, T. (2022). Meta-heuristic optimization of control structure and design for MMC-HVdc applications. Electric Power Systems Research, 213, 108371.
+- Amelin, V., Gatiyatullin, E., Romanov, N., Samarkhanov, R., Vasilyev, R., & Yanovich, Y. (2022). Black-Box for Blockchain Parameters Adjustment. IEEE Access, 10, 101795-101802.
+- Ngo, T. Q., Nguyen, L. Q., & Tran, V. Q. (2022). Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime. International Journal of Pavement Engineering, 1-18.
+- Zhu, Y., & Iiduka, H. (2021). Unified Algorithm Framework for Nonconvex Stochastic Optimization in Deep Neural Networks. IEEE Access, 9, 143807-143823.
+- Hakemi, S., Houshmand, M., KheirKhah, E., & Hosseini, S. A. (2022). A review of recent advances in quantum-inspired metaheuristics. Evolutionary Intelligence, 1-16.
+- Das, A., Das, S. R., Panda, J. P., Dey, A., Gajrani, K. K., Somani, N., & Gupta, N. (2022). Machine learning based modelling and optimization in hard turning of AISI D6 steel with newly developed AlTiSiN coated carbide tool. arXiv preprint arXiv:2202.00596.
+- Yelisetti, S., Saini, V. K., Kumar, R., Lamba, R., & Saxena, A. (2022). Optimal energy management system for residential buildings considering the time of use price with swarm intelligence algorithms. Journal of Building Engineering, 59, 105062.
+- Valdés, G. T. (2022). Algoritmo para la detección de vehículos y peatones combinando CNN´ sy técnicas de búsqueda.
+- Sallam, N. M., Saleh, A. I., Ali, H. A., & Abdelsalam, M. M. (2023). An efficient EGWO algorithm as feature selection for B-ALL diagnoses and its subtypes classification using peripheral blood smear images. Alexandria Engineering Journal, 68, 39-66.
+# Documents
+* Meta-heuristic Categories: (Based on this article: [link](https://doi.org/10.1016/j.procs.2020.09.075))
+ + Evolutionary-based: Idea from Darwin's law of natural selection, evolutionary computing
+ + Swarm-based: Idea from movement, interaction of birds, organization of social ...
+ + Physics-based: Idea from physics law such as Newton's law of universal gravitation, black hole, multiverse
+ + Human-based: Idea from human interaction such as queuing search, teaching learning, ...
+ + Biology-based: Idea from biology creature (or microorganism),...
+ + System-based: Idea from eco-system, immune-system, network-system, ...
+ + Math-based: Idea from mathematical form or mathematical law such as sin-cosin
+ + Music-based: Idea from music instrument
+* Difficulty - Difficulty Level (Personal Opinion): **Objective observation from author**. Depend on the number of
+ parameters, number of equations, the original ideas, time spend for coding, source lines of code (SLOC).
+ + Easy: A few paras, few equations, SLOC very short
+ + Medium: more equations than Easy level, SLOC longer than Easy level
+ + Hard: Lots of equations, SLOC longer than Medium level, the paper hard to read.
+ + Hard* - Very hard: Lots of equations, SLOC too long, the paper is very hard to read.
+** For newbie, we recommend to read the paper of algorithms which difficulty is "easy" or "medium" difficulty level.
+| **Group** | **Name** | **Module** | **Class** | **Year** | **Paras** | **Difficulty** |
+|--------------|-------------------------------------------------|------------|------------------|----------|-----------|----------------|
+| Evolutionary | Evolutionary Programming | EP | OriginalEP | 1964 | 3 | easy |
+| Evolutionary | - | - | LevyEP | - | 3 | easy |
+| Evolutionary | Evolution Strategies | ES | OriginalES | 1971 | 3 | easy |
+| Evolutionary | - | - | LevyES | - | 3 | easy |
+| Evolutionary | Memetic Algorithm | MA | OriginalMA | 1989 | 7 | easy |
+| Evolutionary | Genetic Algorithm | GA | BaseGA | 1992 | 4 | easy |
+| Evolutionary | - | - | SingleGA | - | 7 | easy |
+| Evolutionary | - | - | MultiGA | - | 7 | easy |
+| Evolutionary | - | - | EliteSingleGA | - | 10 | easy |
+| Evolutionary | - | - | EliteMultiGA | - | 10 | easy |
+| Evolutionary | Differential Evolution | DE | BaseDE | 1997 | 5 | easy |
+| Evolutionary | - | - | JADE | 2009 | 6 | medium |
+| Evolutionary | - | - | SADE | 2005 | 2 | medium |
+| Evolutionary | - | - | SHADE | 2013 | 4 | medium |
+| Evolutionary | - | - | L_SHADE | 2014 | 4 | medium |
+| Evolutionary | - | - | SAP_DE | 2006 | 3 | medium |
+| Evolutionary | Flower Pollination Algorithm | FPA | OriginalFPA | 2014 | 4 | medium |
+| Evolutionary | Coral Reefs Optimization | CRO | OriginalCRO | 2014 | 11 | medium |
+| Evolutionary | - | - | OCRO | 2019 | 12 | medium |
+| - | - | - | - | - | - | - |
+| Swarm | Particle Swarm Optimization | PSO | OriginalPSO | 1995 | 6 | easy |
+| Swarm | - | - | PPSO | 2019 | 2 | medium |
+| Swarm | - | - | HPSO_TVAC | 2017 | 4 | medium |
+| Swarm | - | - | C_PSO | 2015 | 6 | medium |
+| Swarm | - | - | CL_PSO | 2006 | 6 | medium |
+| Swarm | Bacterial Foraging Optimization | BFO | OriginalBFO | 2002 | 10 | hard |
+| Swarm | - | - | ABFO | 2019 | 8 | medium |
+| Swarm | Bees Algorithm | BeesA | OriginalBeesA | 2005 | 8 | medium |
+| Swarm | - | - | ProbBeesA | 2015 | 5 | medium |
+| Swarm | Cat Swarm Optimization | CSO | OriginalCSO | 2006 | 11 | hard |
+| Swarm | Artificial Bee Colony | ABC | OriginalABC | 2007 | 8 | medium |
+| Swarm | Ant Colony Optimization | ACO-R | OriginalACOR | 2008 | 5 | easy |
+| Swarm | Cuckoo Search Algorithm | CSA | OriginalCSA | 2009 | 3 | medium |
+| Swarm | Firefly Algorithm | FFA | OriginalFFA | 2009 | 8 | easy |
+| Swarm | Fireworks Algorithm | FA | OriginalFA | 2010 | 7 | medium |
+| Swarm | Bat Algorithm | BA | OriginalBA | 2010 | 6 | medium |
+| Swarm | - | - | AdaptiveBA | - | 8 | medium |
+| Swarm | - | - | ModifiedBA | - | 5 | medium |
+| Swarm | Fruit-fly Optimization Algorithm | FOA | OriginalFOA | 2012 | 2 | easy |
+| Swarm | - | - | BaseFOA | - | 2 | easy |
+| Swarm | - | - | WhaleFOA | 2020 | 2 | medium |
+| Swarm | Social Spider Optimization | SSpiderO | OriginalSSpiderO | 2018 | 4 | hard* |
+| Swarm | Grey Wolf Optimizer | GWO | OriginalGWO | 2014 | 2 | easy |
+| Swarm | - | - | RW_GWO | 2019 | 2 | easy |
+| Swarm | Social Spider Algorithm | SSpiderA | OriginalSSpiderA | 2015 | 5 | medium |
+| Swarm | Ant Lion Optimizer | ALO | OriginalALO | 2015 | 2 | easy |
+| Swarm | - | - | BaseALO | - | 2 | easy |
+| Swarm | Moth Flame Optimization | MFO | OriginalMFO | 2015 | 2 | easy |
+| Swarm | - | - | BaseMFO | - | 2 | easy |
+| Swarm | Elephant Herding Optimization | EHO | OriginalEHO | 2015 | 5 | easy |
+| Swarm | Jaya Algorithm | JA | OriginalJA | 2016 | 2 | easy |
+| Swarm | - | - | BaseJA | - | 2 | easy |
+| Swarm | - | - | LevyJA | 2021 | 2 | easy |
+| Swarm | Whale Optimization Algorithm | WOA | OriginalWOA | 2016 | 2 | medium |
+| Swarm | - | - | HI_WOA | 2019 | 3 | medium |
+| Swarm | Dragonfly Optimization | DO | OriginalDO | 2016 | 2 | medium |
+| Swarm | Bird Swarm Algorithm | BSA | OriginalBSA | 2016 | 9 | medium |
+| Swarm | Spotted Hyena Optimizer | SHO | OriginalSHO | 2017 | 4 | medium |
+| Swarm | Salp Swarm Optimization | SSO | OriginalSSO | 2017 | 2 | easy |
+| Swarm | Swarm Robotics Search And Rescue | SRSR | OriginalSRSR | 2017 | 2 | hard* |
+| Swarm | Grasshopper Optimisation Algorithm | GOA | OriginalGOA | 2017 | 4 | easy |
+| Swarm | Coyote Optimization Algorithm | COA | OriginalCOA | 2018 | 3 | medium |
+| Swarm | Moth Search Algorithm | MSA | OriginalMSA | 2018 | 5 | easy |
+| Swarm | Sea Lion Optimization | SLO | OriginalSLO | 2019 | 2 | medium |
+| Swarm | - | - | ModifiedSLO | - | 2 | medium |
+| Swarm | - | - | ImprovedSLO | - | 4 | medium |
+| Swarm | Nake Mole-Rat Algorithm | NMRA | OriginalNMRA | 2019 | 3 | easy |
+| Swarm | - | - | ImprovedNMRA | - | 4 | medium |
+| Swarm | Pathfinder Algorithm | PFA | OriginalPFA | 2019 | 2 | medium |
+| Swarm | Sailfish Optimizer | SFO | OriginalSFO | 2019 | 5 | easy |
+| Swarm | - | - | ImprovedSFO | - | 3 | medium |
+| Swarm | Harris Hawks Optimization | HHO | OriginalHHO | 2019 | 2 | medium |
+| Swarm | Manta Ray Foraging Optimization | MRFO | OriginalMRFO | 2020 | 3 | medium |
+| Swarm | Bald Eagle Search | BES | OriginalBES | 2020 | 7 | easy |
+| Swarm | Sparrow Search Algorithm | SSA | OriginalSSA | 2020 | 5 | medium |
+| Swarm | - | - | BaseSSA | - | 5 | medium |
+| Swarm | Hunger Games Search | HGS | OriginalHGS | 2021 | 4 | medium |
+| Swarm | Aquila Optimizer | AO | OriginalAO | 2021 | 2 | easy |
+| Swarm | Hybrid Grey Wolf - Whale Optimization Algorithm | GWO | GWO_WOA | 2022 | 2 | easy |
+| Swarm | Marine Predators Algorithm | MPA | OriginalMPA | 2020 | 2 | medium |
+| Swarm | Honey Badger Algorithm | HBA | OriginalHBA | 2022 | 2 | easy |
+| Swarm | Sand Cat Swarm Optimization | SCSO | OriginalSCSO | 2022 | 2 | easy |
+| Swarm | Tuna Swarm Optimization | TSO | OriginalTSO | 2021 | 2 | medium |
+| Swarm | African Vultures Optimization Algorithm | AVOA | OriginalAVOA | 2022 | 7 | medium |
+| Swarm | Artificial Gorilla Troops Optimization | AGTO | OriginalAGTO | 2021 | 5 | medium |
+| Swarm | Artificial Rabbits Optimization | ARO | OriginalARO | 2022 | 2 | easy |
+| Swarm | Dwarf Mongoose Optimization Algorithm | DMOA | OriginalDMOA | 2022 | 4 | medium |
+| Swarm | - | - | DevDMOA | - | 3 | medium |
+| - | - | - | - | - | - | - |
+| Physics | Simulated Annealling | SA | OriginalSA | 1987 | 9 | medium |
+| Physics | Wind Driven Optimization | WDO | OriginalWDO | 2013 | 7 | easy |
+| Physics | Multi-Verse Optimizer | MVO | OriginalMVO | 2016 | 4 | easy |
+| Physics | - | - | BaseMVO | - | 4 | easy |
+| Physics | Tug of War Optimization | TWO | OriginalTWO | 2016 | 2 | easy |
+| Physics | - | - | OppoTWO | - | 2 | medium |
+| Physics | - | - | LevyTWO | - | 2 | medium |
+| Physics | - | - | EnhancedTWO | 2020 | 2 | medium |
+| Physics | Electromagnetic Field Optimization | EFO | OriginalEFO | 2016 | 6 | easy |
+| Physics | - | - | BaseEFO | - | 6 | medium |
+| Physics | Nuclear Reaction Optimization | NRO | OriginalNRO | 2019 | 2 | hard* |
+| Physics | Henry Gas Solubility Optimization | HGSO | OriginalHGSO | 2019 | 3 | medium |
+| Physics | Atom Search Optimization | ASO | OriginalASO | 2019 | 4 | medium |
+| Physics | Equilibrium Optimizer | EO | OriginalEO | 2019 | 2 | easy |
+| Physics | - | - | ModifiedEO | 2020 | 2 | medium |
+| Physics | - | - | AdaptiveEO | 2020 | 2 | medium |
+| Physics | Archimedes Optimization Algorithm | ArchOA | OriginalArchOA | 2021 | 8 | medium |
+| - | - | - | - | - | - | - |
+| Human | Culture Algorithm | CA | OriginalCA | 1994 | 3 | easy |
+| Human | Imperialist Competitive Algorithm | ICA | OriginalICA | 2007 | 8 | hard* |
+| Human | Teaching Learning-based Optimization | TLO | OriginalTLO | 2011 | 2 | easy |
+| Human | - | - | BaseTLO | 2012 | 2 | easy |
+| Human | - | - | ITLO | 2013 | 3 | medium |
+| Human | Brain Storm Optimization | BSO | OriginalBSO | 2011 | 8 | medium |
+| Human | - | - | ImprovedBSO | 2017 | 7 | medium |
+| Human | Queuing Search Algorithm | QSA | OriginalQSA | 2019 | 2 | hard |
+| Human | - | - | BaseQSA | - | 2 | hard |
+| Human | - | - | OppoQSA | - | 2 | hard |
+| Human | - | - | LevyQSA | - | 2 | hard |
+| Human | - | - | ImprovedQSA | 2021 | 2 | hard |
+| Human | Search And Rescue Optimization | SARO | OriginalSARO | 2019 | 4 | medium |
+| Human | - | - | BaseSARO | - | 4 | medium |
+| Human | Life Choice-Based Optimization | LCO | OriginalLCO | 2019 | 3 | easy |
+| Human | - | - | BaseLCO | - | 3 | easy |
+| Human | - | - | ImprovedLCO | - | 2 | easy |
+| Human | Social Ski-Driver Optimization | SSDO | OriginalSSDO | 2019 | 2 | easy |
+| Human | Gaining Sharing Knowledge-based Algorithm | GSKA | OriginalGSKA | 2019 | 6 | medium |
+| Human | - | - | BaseGSKA | - | 4 | medium |
+| Human | Coronavirus Herd Immunity Optimization | CHIO | OriginalCHIO | 2020 | 4 | medium |
+| Human | - | - | BaseCHIO | - | 4 | medium |
+| Human | Forensic-Based Investigation Optimization | FBIO | OriginalFBIO | 2020 | 2 | medium |
+| Human | - | - | BaseFBIO | - | 2 | medium |
+| Human | Battle Royale Optimization | BRO | OriginalBRO | 2020 | 3 | medium |
+| Human | - | - | BaseBRO | - | 3 | medium |
+| Human | Student Psychology Based Optimization | SPBO | OriginalSPBO | 2020 | 2 | medium |
+| Human | - | - | DevSPBO | | 2 | medium |
+| - | - | - | - | - | - | - |
+| Bio | Invasive Weed Optimization | IWO | OriginalIWO | 2006 | 7 | easy |
+| Bio | Biogeography-Based Optimization | BBO | OriginalBBO | 2008 | 4 | easy |
+| Bio | - | - | BaseBBO | - | 4 | easy |
+| Bio | Virus Colony Search | VCS | OriginalVCS | 2016 | 4 | hard* |
+| Bio | - | - | BaseVCS | - | 4 | hard* |
+| Bio | Satin Bowerbird Optimizer | SBO | OriginalSBO | 2017 | 5 | easy |
+| Bio | - | - | BaseSBO | - | 5 | easy |
+| Bio | Earthworm Optimisation Algorithm | EOA | OriginalEOA | 2018 | 8 | medium |
+| Bio | Wildebeest Herd Optimization | WHO | OriginalWHO | 2019 | 12 | hard |
+| Bio | Slime Mould Algorithm | SMA | OriginalSMA | 2020 | 3 | easy |
+| Bio | - | - | BaseSMA | - | 3 | easy |
+| Bio | Barnacles Mating Optimizer | BMO | OriginalBMO | 2018 | 3 | easy |
+| Bio | Tunicate Swarm Algorithm | TSA | OriginalTSA | 2020 | 2 | easy |
+| Bio | Symbiotic Organisms Search | SOS | OriginalSOS | 2014 | 2 | medium |
+| Bio | Seagull Optimization Algorithm | SOA | OriginalSOA | 2019 | 3 | easy |
+| Bio | - | - | DevSOA | - | 3 | easy |
+| - | - | - | - | - | - | - |
+| System | Germinal Center Optimization | GCO | OriginalGCO | 2018 | 4 | medium |
+| System | - | - | BaseGCO | - | 4 | medium |
+| System | Water Cycle Algorithm | WCA | OriginalWCA | 2012 | 5 | medium |
+| System | Artificial Ecosystem-based Optimization | AEO | OriginalAEO | 2019 | 2 | easy |
+| System | - | - | EnhancedAEO | 2020 | 2 | medium |
+| System | - | - | ModifiedAEO | 2020 | 2 | medium |
+| System | - | - | ImprovedAEO | 2021 | 2 | medium |
+| System | - | - | AugmentedAEO | 2022 | 2 | medium |
+| - | - | - | - | - | - | - |
+| Math | Hill Climbing | HC | OriginalHC | 1993 | 3 | easy |
+| Math | - | - | SwarmHC | - | 3 | easy |
+| Math | Cross-Entropy Method | CEM | OriginalCEM | 1997 | 4 | easy |
+| Math | Sine Cosine Algorithm | SCA | OriginalSCA | 2016 | 2 | easy |
+| Math | - | - | BaseSCA | - | 2 | easy |
+| Math | Gradient-Based Optimizer | GBO | OriginalGBO | 2020 | 5 | medium |
+| Math | Arithmetic Optimization Algorithm | AOA | OrginalAOA | 2021 | 6 | easy |
+| Math | Chaos Game Optimization | CGO | OriginalCGO | 2021 | 2 | easy |
+| Math | Pareto-like Sequential Sampling | PSS | OriginalPSS | 2021 | 4 | medium |
+| Math | weIghted meaN oF vectOrs | INFO | OriginalINFO | 2022 | 2 | medium |
+| Math | RUNge Kutta optimizer | RUN | OriginalRUN | 2021 | 2 | hard |
+| Math | Circle Search Algorithm | CircleSA | OriginalCircleSA | 2022 | 3 | easy |
+| - | - | - | - | - | - | - |
+| Music | Harmony Search | HS | OriginalHS | 2001 | 4 | easy |
+| Music | - | - | BaseHS | - | 4 | easy |
+### A
+* **ABC - Artificial Bee Colony**
+ * **OriginalABC**: Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
+* **ACOR - Ant Colony Optimization**.
+ * **OriginalACOR**: Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European journal of operational research, 185(3), 1155-1173.
+* **ALO - Ant Lion Optimizer**
+ * **OriginalALO**: Mirjalili S (2015). “The Ant Lion Optimizer.” Advances in Engineering Software, 83, 80-98. doi: [10.1016/j.advengsoft.2015.01.010](https://doi.org/10.1016/j.advengsoft.2015.01.010)
+ * **BaseALO**: The developed version
+* **AEO - Artificial Ecosystem-based Optimization**
+ * **OriginalAEO**: Zhao, W., Wang, L., & Zhang, Z. (2019). Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Computing and Applications, 1-43.
+ * **AugmentedAEO**: Van Thieu, N., Barma, S. D., Van Lam, T., Kisi, O., & Mahesha, A. (2022). Groundwater level modeling using Augmented Artificial Ecosystem Optimization. Journal of Hydrology, 129034.
+ * **ImprovedAEO**: Rizk-Allah, R. M., & El-Fergany, A. A. (2020). Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model. International Journal of Hydrogen Energy.
+ * **EnhancedAEO**: Eid, A., Kamel, S., Korashy, A., & Khurshaid, T. (2020). An Enhanced Artificial Ecosystem-Based Optimization for Optimal Allocation of Multiple Distributed Generations. IEEE Access, 8, 178493-178513.
+ * **ModifiedAEO**: Menesy, A. S., Sultan, H. M., Korashy, A., Banakhr, F. A., Ashmawy, M. G., & Kamel, S. (2020). Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access, 8, 31892-31909.
+* **ASO - Atom Search Optimization**
+ * **OriginalASO**: Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283-304.
+* **ArchOA - Archimedes Optimization Algorithm**
+ * **OriginalArchOA**: Hashim, F. A., Hussain, K., Houssein, E. H., Mabrouk, M. S., & Al-Atabany, W. (2021). Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 51(3), 1531-1551.
+* **AOA - Arithmetic Optimization Algorithm**
+ * **OriginalAOA**: Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609.
+* **AO - Aquila Optimizer**
+ * **OriginalAO**: Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A., & Gandomi, A. H. (2021). Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Computers & Industrial Engineering, 157, 107250.
+* **AVOA - African Vultures Optimization Algorithm**
+ * **OriginalAVOA**: Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.
+* **AGTO - Artificial Gorilla Troops Optimization**
+ * **OriginalAGTO**: Abdollahzadeh, B., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2021). Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems. International Journal of Intelligent Systems, 36(10), 5887-5958.
+* **ARO - Artificial Rabbits Optimization**:
+ * **OriginalARO**: Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W. (2022). Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 114, 105082.
+### B
+* **BFO - Bacterial Foraging Optimization**
+ * **OriginalBFO**: Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE control systems magazine, 22(3), 52-67.
+ * **ABFO**: Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019, April). Building resource auto-scaler with functional-link neural network and adaptive bacterial foraging optimization. In International Conference on Theory and Applications of Models of Computation (pp. 501-517). Springer, Cham.
+* **BeesA - Bees Algorithm**
+ * **OriginalBeesA**: Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2005). The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK.
+ * **ProbBeesA**: The probabilitic version of: Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454-459). Elsevier Science Ltd.
+* **BBO - Biogeography-Based Optimization**
+ * **OriginalBBO**: Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.
+ * **BaseBBO**: The developed version
+* **BA - Bat Algorithm**
+ * **OriginalBA**: Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg.
+ * **AdaptiveBA**: Wang, X., Wang, W. and Wang, Y., 2013, July. An adaptive bat algorithm. In International Conference on Intelligent Computing(pp. 216-223). Springer, Berlin, Heidelberg.
+ * **ModifiedBA**: Dong, H., Li, T., Ding, R. and Sun, J., 2018. A novel hybrid genetic algorithm with granular information for feature selection and optimization. Applied Soft Computing, 65, pp.33-46.
+* **BSO - Brain Storm Optimization**
+ * **OriginalBSO**: . Shi, Y. (2011, June). Brain storm optimization algorithm. In International conference in swarm intelligence (pp. 303-309). Springer, Berlin, Heidelberg.
+ * **ImprovedBSO**: El-Abd, M., 2017. Global-best brain storm optimization algorithm. Swarm and evolutionary computation, 37, pp.27-44.
+* **BSA - Bird Swarm Algorithm**
+ * **OriginalBSA**: Meng, X. B., Gao, X. Z., Lu, L., Liu, Y., & Zhang, H. (2016). A new bio-inspired optimisation algorithm:Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 28(4), 673-687.
+* **BMO - Barnacles Mating Optimizer**:
+ * **OriginalBMO**: Sulaiman, M. H., Mustaffa, Z., Saari, M. M., Daniyal, H., Daud, M. R., Razali, S., & Mohamed, A. I. (2018, June). Barnacles mating optimizer: a bio-inspired algorithm for solving optimization problems. In 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 265-270). IEEE.
+* **BES - Bald Eagle Search**
+ * **OriginalBES**: Alsattar, H. A., Zaidan, A. A., & Zaidan, B. B. (2019). Novel meta-heuristic bald eagle search optimisation algorithm. Artificial Intelligence Review, 1-28.
+* **BRO - Battle Royale Optimization**
+ * **OriginalBRO**: Rahkar Farshi, T. (2020). Battle royale optimization algorithm. Neural Computing and Applications, 1-19.
+ * **BaseBRO**: The developed version
+### C
+* **CA - Culture Algorithm**
+ * **OriginalCA**: Reynolds, R.G., 1994, February. An introduction to cultural algorithms. In Proceedings of the third annual conference on evolutionary programming (Vol. 24, pp. 131-139). River Edge, NJ: World Scientific.
+* **CEM - Cross Entropy Method**
+ * **OriginalCEM**: Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability, 1(2), 127-190.
+* **CSO - Cat Swarm Optimization**
+ * **OriginalCSO**: Chu, S. C., Tsai, P. W., & Pan, J. S. (2006, August). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg.
+* **CSA - Cuckoo Search Algorithm**
+ * **OriginalCSA**: Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210-214). Ieee.
+* **CRO - Coral Reefs Optimization**
+ * **OriginalCRO**: Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., & Portilla-Figueras, J. A. (2014). The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014.
+ * **OCRO**: Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient time-series forecasting using neural network and opposition-based coral reefs optimization. International Journal of Computational Intelligence Systems, 12(2), 1144-1161.
+* **COA - Coyote Optimization Algorithm**
+ * **OriginalCOA**: Pierezan, J., & Coelho, L. D. S. (2018, July). Coyote optimization algorithm: a new metaheuristic for global optimization problems. In 2018 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE.
+* **CHIO - Coronavirus Herd Immunity Optimization**
+ * **OriginalCHIO**: Al-Betar, M. A., Alyasseri, Z. A. A., Awadallah, M. A., & Abu Doush, I. (2021). Coronavirus herd immunity optimizer (CHIO). Neural Computing and Applications, 33(10), 5011-5042.
+ * **BaseCHIO**: The developed version
+* **CGO - Chaos Game Optimization**
+ * **OriginalCGO**: Talatahari, S., & Azizi, M. (2021). Chaos Game Optimization: a novel metaheuristic algorithm. Artificial Intelligence Review, 54(2), 917-1004.
+* **CSA - Circle Search Algorithm**
+ * **OriginalCSA**: Qais, M. H., Hasanien, H. M., Turky, R. A., Alghuwainem, S., Tostado-Véliz, M., & Jurado, F. (2022). Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm. Mathematics, 10(10), 1626.
+### D
+* **DE - Differential Evolution**
+ * **BaseDE**: Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
+ * **JADE**: Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions on evolutionary computation, 13(5), 945-958.
+ * **SADE**: Qin, A. K., & Suganthan, P. N. (2005, September). Self-adaptive differential evolution algorithm for numerical optimization. In 2005 IEEE congress on evolutionary computation (Vol. 2, pp. 1785-1791). IEEE.
+ * **SHADE**: Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE.
+ * **L_SHADE**: Tanabe, R., & Fukunaga, A. S. (2014, July). Improving the search performance of SHADE using linear population size reduction. In 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658-1665). IEEE.
+ * **SAP_DE**: Teo, J. (2006). Exploring dynamic self-adaptive populations in differential evolution. Soft Computing, 10(8), 673-686.
+* **DSA - Differential Search Algorithm (not done)**
+ * **BaseDSA**: Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers & Geosciences, 46, 229-247.
+* **DO - Dragonfly Optimization**
+ * **OriginalDO**: Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.
+* **DMOA - Dwarf Mongoose Optimization Algorithm**
+ * **OriginalDMOA**: Agushaka, J. O., Ezugwu, A. E., & Abualigah, L. (2022). Dwarf mongoose optimization algorithm. Computer methods in applied mechanics and engineering, 391, 114570.
+ * **DevDMOA**: The developed version
+### E
+* **ES - Evolution Strategies** .
+ * **OriginalES**: Schwefel, H. P. (1984). Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution. Annals of Operations Research, 1(2), 165-167.
+ * **LevyES**: Zhang, S., & Salari, E. (2005). Competitive learning vector quantization with evolution strategies for image compression. Optical Engineering, 44(2), 027006.
+* **EP - Evolutionary programming** .
+ * **OriginalEP**: Fogel, L. J. (1994). Evolutionary programming in perspective: The top-down view. Computational intelligence: Imitating life.
+ * **LevyEP**: Lee, C.Y. and Yao, X., 2001, May. Evolutionary algorithms with adaptive lévy mutations. In Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546) (Vol. 1, pp. 568-575). IEEE.
+* **EHO - Elephant Herding Optimization** .
+ * **OriginalEHO**: Wang, G. G., Deb, S., & Coelho, L. D. S. (2015, December). Elephant herding optimization. In 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (pp. 1-5). IEEE.
+* **EFO - Electromagnetic Field Optimization** .
+ * **OriginalEFO**:Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8-22.
+ * **BaseEFO**: The developed version
+* **EOA - Earthworm Optimisation Algorithm** .
+ * **OriginalEOA**: Wang, G. G., Deb, S., & dos Santos Coelho, L. (2018). Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. IJBIC, 12(1), 1-22.
+* **EO - Equilibrium Optimizer** .
+ * **OriginalEO**: Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2019). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems.
+ * **ModifiedEO**: Gupta, S., Deep, K., & Mirjalili, S. (2020). An efficient equilibrium optimizer with mutation strategy for numerical optimization. Applied Soft Computing, 96, 106542.
+ * **AdaptiveEO**: Wunnava, A., Naik, M. K., Panda, R., Jena, B., & Abraham, A. (2020). A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Engineering Applications of Artificial Intelligence, 94, 103836.
+### F
+* **FFA - Firefly Algorithm**
+ * **OriginalFFA**: Łukasik, S., & Żak, S. (2009, October). Firefly algorithm for continuous constrained optimization tasks. In International conference on computational collective intelligence (pp. 97-106). Springer, Berlin, Heidelberg.
+* **FA - Fireworks algorithm**
+ * **OriginalFA**: Tan, Y., & Zhu, Y. (2010, June). Fireworks algorithm for optimization. In International conference in swarm intelligence (pp. 355-364). Springer, Berlin, Heidelberg.
+* **FPA - Flower Pollination Algorithm**
+ * **OriginalFPA**: Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240-249). Springer, Berlin, Heidelberg.
+* **FOA - Fruit-fly Optimization Algorithm**
+ * **OriginalFOA**: Pan, W. T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74.
+ * **BaseFOA**: The developed version
+ * **WhaleFOA**: Fan, Y., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., & Li, C. (2020). Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications, 159, 113502.
+* **FBIO - Forensic-Based Investigation Optimization**
+ * **OriginalFBIO**: Chou, J.S. and Nguyen, N.M., 2020. FBI inspired meta-optimization. Applied Soft Computing, p.106339.
+ * **BaseFBIO**: Fathy, A., Rezk, H. and Alanazi, T.M., 2021. Recent approach of forensic-based investigation algorithm for optimizing fractional order PID-based MPPT with proton exchange membrane fuel cell.IEEE Access,9, pp.18974-18992.
+* **FHO - Fire Hawk Optimization**
+ * **OriginalFHO**: Azizi, M., Talatahari, S., & Gandomi, A. H. (2022). Fire Hawk Optimizer: a novel metaheuristic algorithm. Artificial Intelligence Review, 1-77.
+### G
+* **GA - Genetic Algorithm**
+ * **BaseGA**: Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
+ * **SingleGA**: De Falco, I., Della Cioppa, A. and Tarantino, E., 2002. Mutation-based genetic algorithm: performance evaluation. Applied Soft Computing, 1(4), pp.285-299.
+ * **MultiGA**: De Jong, K.A. and Spears, W.M., 1992. A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of mathematics and Artificial intelligence, 5(1), pp.1-26.
+ * **EliteSingleGA**: Elite version of Single-point mutation GA
+ * **EliteMultiGA**: Elite version of Multiple-point mutation GA
+* **GWO - Grey Wolf Optimizer**
+ * **OriginalGWO**: Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
+ * **RW_GWO**: Gupta, S., & Deep, K. (2019). A novel random walk grey wolf optimizer. Swarm and evolutionary computation, 44, 101-112.
+ * **GWO_WOA**: Obadina, O. O., Thaha, M. A., Althoefer, K., & Shaheed, M. H. (2022). Dynamic characterization of a master–slave robotic manipulator using a hybrid grey wolf–whale optimization algorithm. Journal of Vibration and Control, 28(15-16), 1992-2003.
+* **GOA - Grasshopper Optimisation Algorithm**
+ * **OriginalGOA**: Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 30-47.
+* **GCO - Germinal Center Optimization**
+ * **OriginalGCO**: Villaseñor, C., Arana-Daniel, N., Alanis, A. Y., López-Franco, C., & Hernandez-Vargas, E. A. (2018). Germinal center optimization algorithm. International Journal of Computational Intelligence Systems, 12(1), 13-27.
+ * **BaseGCO**: The developed version
+* **GSKA - Gaining Sharing Knowledge-based Algorithm**
+ * **OriginalGSKA**: Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 1-29.
+ * **BaseGSKA**: Mohamed, A.W., Hadi, A.A., Mohamed, A.K. and Awad, N.H., 2020, July. Evaluating the performance of adaptive GainingSharing knowledge based algorithm on CEC 2020 benchmark problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.
+* **GBO - Gradient-Based Optimizer**
+ * **OriginalGBO**: Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new metaheuristic optimization algorithm. Information Sciences, 540, 131-159.
+### H
+* **HC - Hill Climbing** .
+ * **OriginalHC**: Talbi, E. G., & Muntean, T. (1993, January). Hill-climbing, simulated annealing and genetic algorithms: a comparative study and application to the mapping problem. In [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences (Vol. 2, pp. 565-573). IEEE.
+ * **SwarmHC**: The developed version based on swarm-based idea (Original is single-solution based method)
+* **HS - Harmony Search** .
+ * **OriginalHS**: Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm:harmony search. simulation, 76(2), 60-68.
+ * **BaseHS**: The developed version
+* **HHO - Harris Hawks Optimization** .
+ * **OriginalHHO**: Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-872.
+* **HGSO - Henry Gas Solubility Optimization** .
+ * **OriginalHGSO**: Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, 646-667.
+* **HGS - Hunger Games Search** .
+ * **OriginalHGS**: Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search:Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.
+* **HHOA - Horse Herd Optimization Algorithm (not done)** .
+ * **BaseHHOA**: MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems, 213, 106711.
+* **HBA - Honey Badger Algorithm**:
+ * **OriginalHBA**: Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S., & Al-Atabany, W. (2022). Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Mathematics and Computers in Simulation, 192, 84-110.
+### I
+* **IWO - Invasive Weed Optimization** .
+ * **OriginalIWO**: Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics, 1(4), 355-366.
+* **ICA - Imperialist Competitive Algorithm**
+ * **OriginalICA**: Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.
+* **INFO - weIghted meaN oF vectOrs**:
+ * **OriginalINFO**: Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
+### J
+* **JA - Jaya Algorithm**
+ * **OriginalJA**: Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
+ * **BaseJA**: The developed version
+ * **LevyJA**: Iacca, G., dos Santos Junior, V. C., & de Melo, V. V. (2021). An improved Jaya optimization algorithm with Levy flight. Expert Systems with Applications, 165, 113902.
+### K
+### L
+* **LCO - Life Choice-based Optimization**
+ * **OriginalLCO**: Khatri, A., Gaba, A., Rana, K. P. S., & Kumar, V. (2019). A novel life choice-based optimizer. Soft Computing, 1-21.
+ * **BaseLCO**: The developed version
+ * **ImprovedLCO**: The improved version using Gaussian distribution and Mutation Mechanism
+### M
+* **MA - Memetic Algorithm**
+ * **OriginalMA**: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.
+* **MFO - Moth Flame Optimization**
+ * **OriginalMFO**: Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249.
+ * **BaseMFO**: The developed version
+* **MVO - Multi-Verse Optimizer**
+ * **OriginalMVO**: Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495-513.
+ * **BaseMVO**: The developed version
+* **MSA - Moth Search Algorithm**
+ * **OriginalMSA**: Wang, G. G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151-164.
+* **MRFO - Manta Ray Foraging Optimization**
+ * **OriginalMRFO**: Zhao, W., Zhang, Z., & Wang, L. (2020). Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence, 87, 103300.
+* **MPA - Marine Predators Algorithm**:
+ * **OriginalMPA**: Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert systems with applications, 152, 113377.
+### N
+* **NRO - Nuclear Reaction Optimization**
+ * **OriginalNRO**: Wei, Z., Huang, C., Wang, X., Han, T., & Li, Y. (2019). Nuclear Reaction Optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access.
+* **NMRA - Nake Mole-Rat Algorithm**
+ * **OriginalNMRA**: Salgotra, R., & Singh, U. (2019). The naked mole-rat algorithm. Neural Computing and Applications, 31(12), 8837-8857.
+ * **ImprovedNMRA**: Singh, P., Mittal, N., Singh, U. and Salgotra, R., 2021. Naked mole-rat algorithm with improved exploration and exploitation capabilities to determine 2D and 3D coordinates of sensor nodes in WSNs. Arabian Journal for Science and Engineering, 46(2), pp.1155-1178.
+### O
+### P
+* **PSO - Particle Swarm Optimization**
+ * **OriginalPSO**: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Ieee.
+ * **PPSO**: Ghasemi, M., Akbari, E., Rahimnejad, A., Razavi, S. E., Ghavidel, S., & Li, L. (2019). Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Computing, 23(19), 9701-9718.
+ * **HPSO_TVAC**: Ghasemi, M., Aghaei, J., & Hadipour, M. (2017). New self-organising hierarchical PSO with jumping time-varying acceleration coefficients. Electronics Letters, 53(20), 1360-1362.
+ * **C_PSO**: Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 25(5), 1261-1271.
+ * **CL_PSO**: Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE transactions on evolutionary computation, 10(3), 281-295.
+* **PFA - Pathfinder Algorithm**
+ * **OriginalPFA**: Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm. Applied Soft Computing, 78, 545-568.
+* **PSS - Pareto-like Sequential Sampling**
+ * **OriginalPSS**: Shaqfa, M., & Beyer, K. (2021). Pareto-like sequential sampling heuristic for global optimisation. Soft Computing, 25(14), 9077-9096.
+### Q
+* **QSA - Queuing Search Algorithm**
+ * **OriginalQSA**: Zhang, J., Xiao, M., Gao, L., & Pan, Q. (2018). Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling, 63, 464-490.
+ * **BaseQSA**: The developed version
+ * **OppoQSA**: Zheng, X. and Nguyen, H., 2022. A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm. Chemosphere, 287, p.132251.
+ * **LevyQSA**: Abderazek, H., Hamza, F., Yildiz, A.R., Gao, L. and Sait, S.M., 2021. A comparative analysis of the queuing search algorithm, the sine-cosine algorithm, the ant lion algorithm to determine the optimal weight design problem of a spur gear drive system. Materials Testing, 63(5), pp.442-447.
+ * **ImprovedQSA**: Nguyen, B.M., Hoang, B., Nguyen, T. and Nguyen, G., 2021. nQSV-Net: a novel queuing search variant for global space search and workload modeling. Journal of Ambient Intelligence and Humanized Computing, 12(1), pp.27-46.
+### R
+* **RUN - RUNge Kutta optimizer**:
+ * **OriginalRUN**: Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
+### S
+* **SA - Simulated Annealling**
+ * **OriginalSA**: . Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated annealing: Theory and applications (pp. 7-15). Springer, Dordrecht.
+* **SSpiderO - Social Spider Optimization**
+ * **OriginalSSpiderO**: Cuevas, E., Cienfuegos, M., ZaldíVar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384.
+* **SOS - Symbiotic Organisms Search**:
+ * **OriginalSOS**: Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112.
+* **SSpiderA - Social Spider Algorithm**
+ * **OriginalSSpiderA**: James, J. Q., & Li, V. O. (2015). A social spider algorithm for global optimization. Applied Soft Computing, 30, 614-627.
+* **SCA - Sine Cosine Algorithm**
+ * **OriginalSCA**: Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133.
+ * **BaseSCA**: Attia, A.F., El Sehiemy, R.A. and Hasanien, H.M., 2018. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, pp.331-343.
+* **SRSR - Swarm Robotics Search And Rescue**
+ * **OriginalSRSR**: Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach. Applied Soft Computing, 57, 708-726.
+* **SBO - Satin Bowerbird Optimizer**
+ * **OriginalSBO**: Moosavi, S. H. S., & Bardsiri, V. K. (2017). Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Engineering Applications of Artificial Intelligence, 60, 1-15.
+ * **BaseSBO**: The developed version
+* **SHO - Spotted Hyena Optimizer**
+ * **OriginalSHO**: Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48-70.
+* **SSO - Salp Swarm Optimization**
+ * **OriginalSSO**: Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
+* **SFO - Sailfish Optimizer**
+ * **OriginalSFO**: Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, 20-34.
+ * **ImprovedSFO**: Li, L.L., Shen, Q., Tseng, M.L. and Luo, S., 2021. Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish algorithm. Journal of Cleaner Production, 316, p.128318.
+* **SARO - Search And Rescue Optimization**
+ * **OriginalSARO**: Shabani, A., Asgarian, B., Gharebaghi, S. A., Salido, M. A., & Giret, A. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering, 2019.
+ * **BaseSARO**: The developed version using Levy-flight
+* **SSDO - Social Ski-Driver Optimization**
+ * **OriginalSSDO**: Tharwat, A., & Gabel, T. (2019). Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications, 1-14.
+* **SLO - Sea Lion Optimization**
+ * **OriginalSLO**: Masadeh, R., Mahafzah, B. A., & Sharieh, A. (2019). Sea Lion Optimization Algorithm. Sea, 10(5).
+ * **ImprovedSLO**: The developed version
+ * **ModifiedSLO**: Masadeh, R., Alsharman, N., Sharieh, A., Mahafzah, B.A. and Abdulrahman, A., 2021. Task scheduling on cloud computing based on sea lion optimization algorithm. International Journal of Web Information Systems.
+* **Seagull Optimization Algorithm**
+ * **OriginalSOA**: Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-based systems, 165, 169-196.
+ * **DevSOA**: The developed version
+* **SMA - Slime Mould Algorithm**
+ * **OriginalSMA**: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
+ * **BaseSMA**: The developed version
+* **SSA - Sparrow Search Algorithm**
+ * **OriginalSSA**: Jiankai Xue & Bo Shen (2020) A novel swarm intelligence optimization approach: sparrow search algorithm, Systems Science & Control Engineering, 8:1, 22-34, DOI: 10.1080/21642583.2019.1708830
+ * **BaseSSA**: The developed version
+* **SPBO - Student Psychology Based Optimization**
+ * **OriginalSPBO**: Das, B., Mukherjee, V., & Das, D. (2020). Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems. Advances in Engineering software, 146, 102804.
+ * **DevSPBO**: The developed version
+* **SCSO - Sand Cat Swarm Optimization**
+ * **OriginalSCSO**: Seyyedabbasi, A., & Kiani, F. (2022). Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Engineering with Computers, 1-25.
+### T
+* **TLO - Teaching Learning Optimization**
+ * **OriginalTLO**: Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.
+ * **BaseTLO**: Rao, R., & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations, 3(4), 535-560.
+ * **ImprovedTLO**: Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710-720.
+* **TWO - Tug of War Optimization**
+ * **OriginalTWO**: Kaveh, A., & Zolghadr, A. (2016). A novel meta-heuristic algorithm: tug of war optimization. Iran University of Science & Technology, 6(4), 469-492.
+ * **OppoTWO**: Kaveh, A., Almasi, P. and Khodagholi, A., 2022. Optimum Design of Castellated Beams Using Four Recently Developed Meta-heuristic Algorithms. Iranian Journal of Science and Technology, Transactions of Civil Engineering, pp.1-13.
+ * **LevyTWO**: The developed version using Levy-flight
+ * **ImprovedTWO**: Nguyen, T., Hoang, B., Nguyen, G., & Nguyen, B. M. (2020). A new workload prediction model using extreme learning machine and enhanced tug of war optimization. Procedia Computer Science, 170, 362-369.
+* **TSA - Tunicate Swarm Algorithm**
+ * **OriginalTSA**: Kaur, S., Awasthi, L. K., Sangal, A. L., & Dhiman, G. (2020). Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence, 90, 103541.
+* **TSO - Tuna Swarm Optimization**
+ * **OriginalTSO**: Xie, L., Han, T., Zhou, H., Zhang, Z. R., Han, B., & Tang, A. (2021). Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Computational intelligence and Neuroscience, 2021.
+### U
+### V
+* **VCS - Virus Colony Search**
+ * **OriginalVCS**: Li, M. D., Zhao, H., Weng, X. W., & Han, T. (2016). A novel nature-inspired algorithm for optimization: Virus colony search. Advances in Engineering Software, 92, 65-88.
+ * **BaseVCS**: The developed version
+### W
+* **WCA - Water Cycle Algorithm**
+ * **OriginalWCA**: Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151-166.
+* **WOA - Whale Optimization Algorithm**
+ * **OriginalWOA**: Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
+ * **HI_WOA**: Tang, C., Sun, W., Wu, W., & Xue, M. (2019, July). A hybrid improved whale optimization algorithm. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 362-367). IEEE.
+* **WHO - Wildebeest Herd Optimization**
+ * **OriginalWHO**: Amali, D., & Dinakaran, M. (2019). Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-14.
+* **WDO - Wind Driven Optimization**
+ * **OriginalWDO**: Bayraktar, Z., Komurcu, M., Bossard, J.A. and Werner, D.H., 2013. The wind driven optimization technique and its application in electromagnetics. IEEE transactions on antennas and propagation, 61(5), pp.2745-2757.
+### X
+### Y
+### Z
+
+%prep
+%autosetup -n mealpy-2.5.3
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-mealpy -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 2.5.3-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..2c477b5
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+c81d5e84a3ddae59defa99f26083ad06 mealpy-2.5.3.tar.gz