diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-05 13:46:10 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 13:46:10 +0000 |
commit | e797c68b8b21faea8a9f1dc673b244dc68840b04 (patch) | |
tree | 33ed25812353d789894f696eb64fb3967f420122 | |
parent | 5c1a64f41045a8e188f9b51137f8e97c9ec54361 (diff) |
automatic import of python-metriculousopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-metriculous.spec | 537 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 539 insertions, 0 deletions
@@ -0,0 +1 @@ +/metriculous-0.3.0.tar.gz diff --git a/python-metriculous.spec b/python-metriculous.spec new file mode 100644 index 0000000..3090a65 --- /dev/null +++ b/python-metriculous.spec @@ -0,0 +1,537 @@ +%global _empty_manifest_terminate_build 0 +Name: python-metriculous +Version: 0.3.0 +Release: 1 +Summary: Very unstable library containing utilities to measure and visualize statistical properties of machine learning models. +License: MIT +URL: https://github.com/metriculous-ml/metriculous +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/64/5d/dae8ff38946fa2a97463b36e3b01fb908f650437c20d2f0c3ceaa6c52b94/metriculous-0.3.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-scikit-learn +Requires: python3-assertpy +Requires: python3-pandas +Requires: python3-bokeh +Requires: python3-jupyter + +%description +<p align="center"> + <a href="https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks"> + <img + src="https://mybinder.org/badge_logo.svg" + alt="Launch Binder" + /> + </a> + <a href="https://github.com/metriculous-ml/metriculous/actions"> + <img + src="https://github.com/metriculous-ml/metriculous/workflows/CI/badge.svg?branch=master" + alt="Current GitHub Actions build status" + /> + </a> + <a href="http://mypy-lang.org/"> + <img + src="https://img.shields.io/badge/mypy-checked-blue" + alt="Checked with mypy" + /> + </a> + <a href="https://badge.fury.io/py/metriculous"> + <img + src="https://badge.fury.io/py/metriculous.svg" + alt="PyPI version" + /> + </a> + <img + src="https://img.shields.io/pypi/pyversions/metriculous" + alt="PyPI - Python Version" + > + <img + src="https://img.shields.io/github/license/metriculous-ml/metriculous" + alt="License MIT" + > + <a href="https://luminovo.ai/"> + <img + src="https://img.shields.io/badge/friends%20with-luminovo.AI-green" + alt="Friends with Luminovo.AI" + > + </a> +</p> + +# __`metriculous`__ + +Measure, visualize, and compare machine learning model performance without the usual boilerplate. +Breaking API improvements to be expected. + + +# Installation +```console +$ pip install metriculous +``` + +Or, for the latest unreleased version: +```console +$ pip install git+https://github.com/metriculous-ml/metriculous.git +``` + + +# Comparing Regression Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_regression.py) +<details><summary>Click to see more code</summary> +<p> + +```python +import numpy as np + +# Mock the ground truth, a one-dimensional array of floats +ground_truth = np.random.random(300) + +# Mock the output of a few models +perfect_model = ground_truth +noisy_model = ground_truth + 0.1 * np.random.randn(*ground_truth.shape) +random_model = np.random.randn(*ground_truth.shape) +zero_model = np.zeros_like(ground_truth) +``` +</p> +</details> + +```python +import metriculous + +metriculous.compare_regressors( + ground_truth=ground_truth, + model_predictions=[perfect_model, noisy_model, random_model, zero_model], + model_names=["Perfect Model", "Noisy Model", "Random Model", "Zero Model"], +).save_html("comparison.html").display() +``` + +This will save an HTML file with common regression metrics and charts, and if you are working in a [Jupyter notebook](https://github.com/jupyter/notebook) will display the output right in front of you: + + + + + + +# Comparing Classification Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_classification.py) +<details><summary>Click to see more code</summary> +<p> + +```python +import numpy as np + + +def normalize(array2d: np.ndarray) -> np.ndarray: + return array2d / array2d.sum(axis=1, keepdims=True) + + +class_names = ["Cat", "Dog", "Pig"] +num_classes = len(class_names) +num_samples = 500 + +# Mock ground truth +ground_truth = np.random.choice(range(num_classes), size=num_samples, p=[0.5, 0.4, 0.1]) + +# Mock model predictions +perfect_model = np.eye(num_classes)[ground_truth] +noisy_model = normalize( + perfect_model + 2 * np.random.random((num_samples, num_classes)) +) +random_model = normalize(np.random.random((num_samples, num_classes))) +``` + +</p> +</details> + +```python +import metriculous + +metriculous.compare_classifiers( + ground_truth=ground_truth, + model_predictions=[perfect_model, noisy_model, random_model], + model_names=["Perfect Model", "Noisy Model", "Random Model"], + class_names=class_names, + one_vs_all_figures=True, +).display() +``` + + + + + + + + + + +# Development + +### Poetry +This project uses [poetry](https://poetry.eustace.io/) to manage +dependencies. Please make sure it is installed for the required python version. Then install the dependencies with `poetry install`. + +### Makefile +A Makefile is used to automate common development workflows. Type `make` or `make help` to see a list of available commands. Before commiting changes it is recommended to run `make format check test`. + + +%package -n python3-metriculous +Summary: Very unstable library containing utilities to measure and visualize statistical properties of machine learning models. +Provides: python-metriculous +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-metriculous +<p align="center"> + <a href="https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks"> + <img + src="https://mybinder.org/badge_logo.svg" + alt="Launch Binder" + /> + </a> + <a href="https://github.com/metriculous-ml/metriculous/actions"> + <img + src="https://github.com/metriculous-ml/metriculous/workflows/CI/badge.svg?branch=master" + alt="Current GitHub Actions build status" + /> + </a> + <a href="http://mypy-lang.org/"> + <img + src="https://img.shields.io/badge/mypy-checked-blue" + alt="Checked with mypy" + /> + </a> + <a href="https://badge.fury.io/py/metriculous"> + <img + src="https://badge.fury.io/py/metriculous.svg" + alt="PyPI version" + /> + </a> + <img + src="https://img.shields.io/pypi/pyversions/metriculous" + alt="PyPI - Python Version" + > + <img + src="https://img.shields.io/github/license/metriculous-ml/metriculous" + alt="License MIT" + > + <a href="https://luminovo.ai/"> + <img + src="https://img.shields.io/badge/friends%20with-luminovo.AI-green" + alt="Friends with Luminovo.AI" + > + </a> +</p> + +# __`metriculous`__ + +Measure, visualize, and compare machine learning model performance without the usual boilerplate. +Breaking API improvements to be expected. + + +# Installation +```console +$ pip install metriculous +``` + +Or, for the latest unreleased version: +```console +$ pip install git+https://github.com/metriculous-ml/metriculous.git +``` + + +# Comparing Regression Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_regression.py) +<details><summary>Click to see more code</summary> +<p> + +```python +import numpy as np + +# Mock the ground truth, a one-dimensional array of floats +ground_truth = np.random.random(300) + +# Mock the output of a few models +perfect_model = ground_truth +noisy_model = ground_truth + 0.1 * np.random.randn(*ground_truth.shape) +random_model = np.random.randn(*ground_truth.shape) +zero_model = np.zeros_like(ground_truth) +``` +</p> +</details> + +```python +import metriculous + +metriculous.compare_regressors( + ground_truth=ground_truth, + model_predictions=[perfect_model, noisy_model, random_model, zero_model], + model_names=["Perfect Model", "Noisy Model", "Random Model", "Zero Model"], +).save_html("comparison.html").display() +``` + +This will save an HTML file with common regression metrics and charts, and if you are working in a [Jupyter notebook](https://github.com/jupyter/notebook) will display the output right in front of you: + + + + + + +# Comparing Classification Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_classification.py) +<details><summary>Click to see more code</summary> +<p> + +```python +import numpy as np + + +def normalize(array2d: np.ndarray) -> np.ndarray: + return array2d / array2d.sum(axis=1, keepdims=True) + + +class_names = ["Cat", "Dog", "Pig"] +num_classes = len(class_names) +num_samples = 500 + +# Mock ground truth +ground_truth = np.random.choice(range(num_classes), size=num_samples, p=[0.5, 0.4, 0.1]) + +# Mock model predictions +perfect_model = np.eye(num_classes)[ground_truth] +noisy_model = normalize( + perfect_model + 2 * np.random.random((num_samples, num_classes)) +) +random_model = normalize(np.random.random((num_samples, num_classes))) +``` + +</p> +</details> + +```python +import metriculous + +metriculous.compare_classifiers( + ground_truth=ground_truth, + model_predictions=[perfect_model, noisy_model, random_model], + model_names=["Perfect Model", "Noisy Model", "Random Model"], + class_names=class_names, + one_vs_all_figures=True, +).display() +``` + + + + + + + + + + +# Development + +### Poetry +This project uses [poetry](https://poetry.eustace.io/) to manage +dependencies. Please make sure it is installed for the required python version. Then install the dependencies with `poetry install`. + +### Makefile +A Makefile is used to automate common development workflows. Type `make` or `make help` to see a list of available commands. Before commiting changes it is recommended to run `make format check test`. + + +%package help +Summary: Development documents and examples for metriculous +Provides: python3-metriculous-doc +%description help +<p align="center"> + <a href="https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks"> + <img + src="https://mybinder.org/badge_logo.svg" + alt="Launch Binder" + /> + </a> + <a href="https://github.com/metriculous-ml/metriculous/actions"> + <img + src="https://github.com/metriculous-ml/metriculous/workflows/CI/badge.svg?branch=master" + alt="Current GitHub Actions build status" + /> + </a> + <a href="http://mypy-lang.org/"> + <img + src="https://img.shields.io/badge/mypy-checked-blue" + alt="Checked with mypy" + /> + </a> + <a href="https://badge.fury.io/py/metriculous"> + <img + src="https://badge.fury.io/py/metriculous.svg" + alt="PyPI version" + /> + </a> + <img + src="https://img.shields.io/pypi/pyversions/metriculous" + alt="PyPI - Python Version" + > + <img + src="https://img.shields.io/github/license/metriculous-ml/metriculous" + alt="License MIT" + > + <a href="https://luminovo.ai/"> + <img + src="https://img.shields.io/badge/friends%20with-luminovo.AI-green" + alt="Friends with Luminovo.AI" + > + </a> +</p> + +# __`metriculous`__ + +Measure, visualize, and compare machine learning model performance without the usual boilerplate. +Breaking API improvements to be expected. + + +# Installation +```console +$ pip install metriculous +``` + +Or, for the latest unreleased version: +```console +$ pip install git+https://github.com/metriculous-ml/metriculous.git +``` + + +# Comparing Regression Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_regression.py) +<details><summary>Click to see more code</summary> +<p> + +```python +import numpy as np + +# Mock the ground truth, a one-dimensional array of floats +ground_truth = np.random.random(300) + +# Mock the output of a few models +perfect_model = ground_truth +noisy_model = ground_truth + 0.1 * np.random.randn(*ground_truth.shape) +random_model = np.random.randn(*ground_truth.shape) +zero_model = np.zeros_like(ground_truth) +``` +</p> +</details> + +```python +import metriculous + +metriculous.compare_regressors( + ground_truth=ground_truth, + model_predictions=[perfect_model, noisy_model, random_model, zero_model], + model_names=["Perfect Model", "Noisy Model", "Random Model", "Zero Model"], +).save_html("comparison.html").display() +``` + +This will save an HTML file with common regression metrics and charts, and if you are working in a [Jupyter notebook](https://github.com/jupyter/notebook) will display the output right in front of you: + + + + + + +# Comparing Classification Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_classification.py) +<details><summary>Click to see more code</summary> +<p> + +```python +import numpy as np + + +def normalize(array2d: np.ndarray) -> np.ndarray: + return array2d / array2d.sum(axis=1, keepdims=True) + + +class_names = ["Cat", "Dog", "Pig"] +num_classes = len(class_names) +num_samples = 500 + +# Mock ground truth +ground_truth = np.random.choice(range(num_classes), size=num_samples, p=[0.5, 0.4, 0.1]) + +# Mock model predictions +perfect_model = np.eye(num_classes)[ground_truth] +noisy_model = normalize( + perfect_model + 2 * np.random.random((num_samples, num_classes)) +) +random_model = normalize(np.random.random((num_samples, num_classes))) +``` + +</p> +</details> + +```python +import metriculous + +metriculous.compare_classifiers( + ground_truth=ground_truth, + model_predictions=[perfect_model, noisy_model, random_model], + model_names=["Perfect Model", "Noisy Model", "Random Model"], + class_names=class_names, + one_vs_all_figures=True, +).display() +``` + + + + + + + + + + +# Development + +### Poetry +This project uses [poetry](https://poetry.eustace.io/) to manage +dependencies. Please make sure it is installed for the required python version. Then install the dependencies with `poetry install`. + +### Makefile +A Makefile is used to automate common development workflows. Type `make` or `make help` to see a list of available commands. Before commiting changes it is recommended to run `make format check test`. + + +%prep +%autosetup -n metriculous-0.3.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-metriculous -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.0-1 +- Package Spec generated @@ -0,0 +1 @@ +8265f9d0168e759a62e306b86cdca510 metriculous-0.3.0.tar.gz |